DigitalTRACE[™] Operator's Manual

Copyright © 2023 by JETA Molecular, All Rights Reserved.

Table of contents

Warning and Precautions 3 Product Use Limitations 3 Limited License Agreement 3 Disclaimer 4 Copyrights and Trademarks 4
Product Use Limitations3Limited License Agreement3Disclaimer4Copyrights and Trademarks4
Limited License Agreement
Disclaimer
Copyrights and Trademarks 4
Materials 5
Keys to Symbols 5
Materials Provided 6
Materials Sold Separately 8
Recommended DNA Isolation 10
Safety Information
Warnings
Chipping and Storage
Tochnical Assistance
Dringiple of the Method
Philippe of the Method
Background Information
Product Overview
Genotyping Test
Monitoring Test
Digital I RACE Workflow
Genotyping Test
Genotyping Test Protocol
Experiment Setup in QIAcuity Suite Software
Biorad Droplet Reader Setup in QuantaSoft
Thermal Cycling and imaging Protocol for DigitalTRACE [™] Products
Genotyping Data Analysis and Report 26
Monitoring Test
Monitoring Test Protocol
Monitoring Data Analysis and Report 37
Assay Filtering from Monitoring Reports
Assigning Infromative Assays40
Software Overview
Preferences
Plate Setup 42
Custom Types
Concentrations
Data and Reports
Data Locations
Materials Tracking
lisers 47
l anguage
Software Buttons 48
Anonymized Reporting 49
Glossary and Definitions

Introduction

Welcome to the DigitalTRACE[™] Digital PCR Analysis System Operator's Manual and Help System. This document serves as both the DigitalTRACE[™] Operator's Manual and the help system found within the TRACE Analysis[™] Software package.

Navigate to your subject of interest and find the solution to your question. If your topic of interest is not listed or you would like to receive additional information, do not hesitate to contact us. The content of this help system is regularly updated. We encourage you to inform us of inaccuracies or suggestions. We do our utmost to implement your suggestions swiftly, such that you and other DigitalTRACE[™] users may benefit from it.

JETA Molecular BV. info@jetabv.com https://www.jetamolecular.com/contact

Warning and Precautions

Product Use Limitations

This version of TRACE Analysis[™] Software is for Research Use Only. It is not intended for use in diagnostic procedures.

No claim or representation is intended to provide information for the diagnosis, prevention, or treatment of a disease.

Limited License Agreement

Use of this product signifies the agreement of any purchaser or user of the DigitalTRACE[™] kits or components (collectively referred to as DigitalTRACE[™] Kits herein) with the following terms:

The DigitalTRACE[™] Kits may be used solely in accordance with the DigitalTRACE[™] Kits manual and for use with components contained in the kit only. JETA Molecular grants no license under any of its intellectual property to use or incorporate the enclosed components of this kit with any components not included within this kit except as described in the DigitalTRACE[™] Kits manual and additional protocols available at www.jetabv.com.

Other than expressly stated licenses, JETA Molecular makes no warranty that this kit and/or its use(s) do not infringe the rights of third parties.

This kit and its components are licensed for one-time use and may not be re-used, re-furbished, re-sold or reverse engineered.

JETA Molecular specifically does not disclaim any other licenses, expressed or implied other than those expressly stated.

The purchaser and user of the kit agree not to take or permit anyone else to take any steps that could lead to or facilitate any acts prohibited above. JETA Molecular may enforce the prohibitions of this Limited License Agreement in any Court, and shall recover all its investigative and Court costs, including attorney fees, in any action to enforce this Limited License Agreement

or any of its intellectual property rights relating to the kit and/or its components.

Disclaimer

JETA Molecular makes every effort to ensure that this manual is accurate. JETA Molecular disclaims liability for any inaccuracies or omissions that may have occurred. Information in this manual is subject to change without notice.

JETA Molecular assumes no responsibility for any inaccuracies that may be contained in this manual.

JETA Molecular reserves the right to make improvements to this manual and/or to the products described in this manual, at any time without notice.

If you find information in this manual that is incorrect, misleading, or incomplete, we would appreciate your comments and suggestions. Please send them to info@jetabv.com.

Copyrights and Trademarks

This publication, including all photographs and illustrations, is protected under international copyright laws, with all rights reserved. Neither this manual, nor any of the material contained herein, may be reproduced without written consent of JETA Molecular.

JETA Molecular and its logo design are registered trademarks of JETA Molecular BV. in the U.S. and/or certain other countries.

DigitalTRACE[™] is a registered trademark of ElsworthMolecular Holding BV. in the U.S. and/or certain other countries. QTRACE[®] Products and Software are licensed exclusively to JETA Molecular BV. from ElsworthMolecular Holding BV.

MicroAmp[®] is a registered trademark of Thermo Fisher.

Moq Copyright © 2007. Clarius Consulting, Manas Technology Solutions, InSTEDD http://www.moqthis.com/ All rights reserved.

NUnit

Portions Copyright © 2002-2013 Charlie Poole or Copyright © 2002-2004 James W. Newkirk, Michael C. Two, Alexei A. Vorontsov or Copyright © 2000-2002 Philip A. Craig

PDFsharp Copyright © 2005-2007 empira Software GmbH, Cologne (Germany)

SharpZipLib

WPF Toolkit

All other trademarks, copyrights, patents, service marks, logos and trade names are the sole property of their respective owners.

Materials

Keys to Symbols

The following symbols appear within the labeling of the DigitalTRACE[™] Products:

Label	Name	Meaning
RUO	Research Use Only	The RUO mark indicates that this product is for research use only, not clinical use.
LOT	Lot number	The lot number identifies the reagent batch.
REF	Reference	The product reference code of the product.
	Manufacturer of the device and production date	The company name of the manufacturer of the product, JETA Molecular BV., and our address: Krommewetering 101C, 3543 AN Utrecht, The Netherlands, EU The date next to this label is the date of manufacture.
	Number of tests	The kit contains enough reagents for <n> tests. The number next to this symbol shows the total number of tests that you can perform</n>
	Expiry date	The expiry date of the kit. The date next to this label is the expiration date of the item that expires the soonest in the kit.
	Storage temperature	The lowest and highest temperature the contents can be safely exposed to in storage.
www.jetamolecular.com	Consult instructions for use	The user should read the instructions for use (IFU) to learn how to use the product in a safe and efficient way.

Materials Provided

REF	Name	Description	Storage Conditions	Unit
121045	DigitalTRACE™ QIAcuity Genotyping Plate	Two ABI MicroAmp [®] Optical 96-well plates pre-arrayed with INDEL dPCR Assays; individually sealed	30°C	Вох
121056	DigitalTRACE™ EP QIAcuity Genotyping Plate	Two ABI MicroAmp [®] Optical 96-well plates pre-arrayed with INDEL dPCR Assays; individually sealed	30°C	Вох
121227	MultiTRACE™ v3 Genotyping Plate	Four ABI MicroAmp [®] Optical 96-well plates pre-arrayed with INDEL Assays; individually sealed	30°C	Вох

REF	Name	Description	Storage Conditions	Unit
711294	DigitalTRACE™ Universal Positive Control	360µl buffered solution containing synthetic DNA serving as positive control	-20C	Tube
	DigitalTRACE™ INDEL Assays	26µl buffered solution containing a mix of primers and probe for detecting the variant of interest in FAM and a reference assay in HEX	-20C	Tube
	DigitalTRACE™ HLA Assays	26µl buffered solution containing a mix of primers and probe for detecting the variant of interest in FAM and a reference assay in HEX	-20C	Tube

DigitalTRACE[™] Monitoring Assay Reference Numbers:

REF	Name	REF	Name
811140	DigitalTRACE [™] INDEL Assay 102	811030	DigitalTRACE™ INDEL Assay 748
811141	DigitalTRACE [™] INDEL Assay 113	811053	DigitalTRACE [™] INDEL Assay 755
811142	DigitalTRACE [™] INDEL Assay 120	811167	DigitalTRACE [™] INDEL Assay 777
811001	DigitalTRACE [™] INDEL Assay 137	811032	DigitalTRACE [™] INDEL Assay 784
811143	DigitalTRACE [™] INDEL Assay 157	811168	DigitalTRACE [™] INDEL Assay 795
811144	DigitalTRACE [™] INDEL Assay 176	811034	DigitalTRACE [™] INDEL Assay 824
811145	DigitalTRACE [™] INDEL Assay 183	811036	DigitalTRACE [™] INDEL Assay 840
811146	DigitalTRACE [™] INDEL Assay 198	811169	DigitalTRACE [™] INDEL Assay 874
811147	DigitalTRACE [™] INDEL Assay 222	811170	DigitalTRACE [™] INDEL Assay 884
811004	DigitalTRACE [™] INDEL Assay 235	811171	DigitalTRACE [™] INDEL Assay 892
811005	DigitalTRACE [™] INDEL Assay 240	811040	DigitalTRACE™ INDEL Assay 916

811148	DigitalTRACE [™] INDEL Assay 252	811172	DigitalTRACE [™] INDEL Assay 923
811006	DigitalTRACE™ INDEL Assay 267	811173	DigitalTRACE™ INDEL Assay 936
811149	DigitalTRACE [™] INDEL Assay 275	811041	DigitalTRACE [™] INDEL Assay 948
811009	DigitalTRACE [™] INDEL Assay 312	811042	DigitalTRACE™ INDEL Assay 954
811150	DigitalTRACE [™] INDEL Assay 333	811174	DigitalTRACE [™] INDEL Assay 962
811011	DigitalTRACE [™] INDEL Assay 345	811175	DigitalTRACE [™] INDEL Assay 971
811013	DigitalTRACE [™] INDEL Assay 359	811176	DigitalTRACE™ INDEL Assay 987
811014	DigitalTRACE [™] INDEL Assay 361	811177	DigitalTRACE [™] INDEL Assay 990
811064	DigitalTRACE [™] INDEL Assay 386		
811151	DigitalTRACE [™] INDEL Assay 396	811078	DigitalTRACE [™] HLA Assay H005
811015	DigitalTRACE [™] INDEL Assay 408	811080	DigitalTRACE [™] HLA Assay H007
811016	DigitalTRACE [™] INDEL Assay 425	811083	DigitalTRACE [™] HLA Assay H017
811017	DigitalTRACE [™] INDEL Assay 434	811085	DigitalTRACE [™] HLA Assay H022
811152	DigitalTRACE™ INDEL Assay 441	811087	DigitalTRACE [™] HLA Assay H025
811153	DigitalTRACE [™] INDEL Assay 450	811088	DigitalTRACE [™] HLA Assay H028
811018	DigitalTRACE™ INDEL Assay 469	811091	DigitalTRACE [™] HLA Assay H036
811154	DigitalTRACE [™] INDEL Assay 472	811092	DigitalTRACE [™] HLA Assay H038
811155	DigitalTRACE [™] INDEL Assay 482	811093	DigitalTRACE [™] HLA Assay H039
811156	DigitalTRACE™ INDEL Assay 493	811095	DigitalTRACE [™] HLA Assay H043
811054	DigitalTRACE™ INDEL Assay 519	811096	DigitalTRACE [™] HLA Assay H045
811021	DigitalTRACE [™] INDEL Assay 531	811098	DigitalTRACE [™] HLA Assay H051
811022	DigitalTRACE™ INDEL Assay 548	811099	DigitalTRACE [™] HLA Assay H052
811157	DigitalTRACE™ INDEL Assay 555	811100	DigitalTRACE [™] HLA Assay H053
811158	DigitalTRACE™ INDEL Assay 567	811101	DigitalTRACE™ HLA Assay H054
811159	DigitalTRACE™ INDEL Assay 574	811133	DigitalTRACE [™] HLA Assay H102
811160	DigitalTRACE™ INDEL Assay 585	811134	DigitalTRACE [™] HLA Assay H103
811161	DigitalTRACE™ INDEL Assay 597	811279	DigitalTRACE™ HLA Assay H104
811023	DigitalTRACE™ INDEL Assay 601	811280	DigitalTRACE™ HLA Assay H105
811024	DigitalTRACE™ INDEL Assay 615	811281	DigitalTRACE™ HLA Assay H106
811026	DigitalTRACE™ INDEL Assay 634	811282	DigitalTRACE™ HLA Assay H107
811027	DigitalTRACE™ INDEL Assay 650	811283	DigitalTRACE™ HLA Assay H108
811162	DigitalTRACE™ INDEL Assay 663	811290	DigitalTRACE™ HLA Assay H110
811163	DigitalTRACE™ INDEL Assay 670	811291	DigitalTRACE™ HLA Assay H111
811164	DigitalTRACE™ INDEL Assay 678	811292	DigitalTRACE™ HLA Assay H112
811165	DigitalTRACE™ INDEL Assay 681	811293	DigitalTRACE™ HLA Assay H113
811166	DigitalTRACE™ INDEL Assay 694	811296	DigitalTRACE™ HLA Assay H114
811028	DigitalTRACE™ INDEL Assay 706	811297	DigitalTRACE™ HLA Assay H115
811065	DigitalTRACE™ INDEL Assay 710	811298	DigitalTRACE™ HLA Assay H116
811051	DigitalTRACE™ INDEL Assay 721	811299	DigitalTRACE™ HLA Assay H117
811029	DigitalTRACE™ INDEL Assay 736	811300	DigitalTRACE™ HLA Assay H118

REF	Name	Description
341048	TRACE Analysis™ Software	Minimum System Requirements: Windows 7, 2 GB RAM, 250 MB free disk space, Network connection allowing TCP/IP traffic to and from port 3500, Microsoft .NET framework 4.5. Recommended System Requirements: Windows 7, 2 GB RAM, Internet connection for license validation and automatic updates, 500 MB free disk space, Microsoft .NET framework 4.5

REF	Name	Description
331307	DigitalTRACE™ System Operator's Manual	Operator's Manual for DigitalTRACE [™] Analysis System

Materials Sold Separately

Additional Reagents Required but not Provided

Item name	Catalog number
Modified TE Buffer (10 mM Tris-HCl, pH 8.0, 0.1 mM EDTA) (also called TE 0.1 Buffer or TE-4 Buffer)	Not applicable
Molecular grade water (DNase and RNase free)	Not applicable
QIAcuity Probe PCR Kit (Qiagen)	250102
ddPCR Supermix for Probes (Biorad)	1863023

Additional Equipment Required but not Provided

Item name	Catalog number
QIAcuity One, 5plex (Qiagen)	9245359
Biorad QX200 Droplet Digital PCR System (Biorad)	1864001
Adjustable single channel pipettes (0.5-1000 μ L capacity)	Not applicable
Adjustable multi-channel, multi-dispensing pipettes (0.5- 200 μL capacity)	Not applicable
Vortex mixer with flat rubber platform head	Not applicable
Centrifuge	Not applicable
Centrifuge with microtiter plate assembly	Not applicable
PC for the installation of TRACE Analysis™ Software	Not applicable
QIAcuity Analysis Suite Software (Qiagen)	Not applicable
QuantaSoft or QX Manager Software (Biorad)	Not applicable

Additional Consumables Required but not Provided

Item name	Catalog number
Pipette Tips, disposable, sterile, aerosol-resistant, filtered, capable of dispensing up to 20, 200, and 1000 μ L.	Not applicable
1.5 mL microcentrifuge tubes	Not applicable

Lint-free tissue	Not applicable
Gloves, powder-free	Not applicable
96-well plates or strip tubes	Not applicable
Plate seals	Not applicable
QIAcuity Nanoplate 26k 24-well (Qiagen)	250001
QIAcuity Nanoplate 8.5k 96-well (Qiagen)	250021
DG8 Cartridges (Biorad)	1864008
DG8 Gaskets (Biorad)	1863009
ddPCR 96-well PCR Plates (Biorad)	12001925
PCR Plate Heat Seal, foil, pierceable (Biorad)	1814040
Droplet Generation Oil for Probes (Biorad)	1863005
ddPCR Droplet Reader Oil (Biorad)	1863004

Recommended DNA Isolation

Blood samples should be collected in ACD or EDTA anticoagulation tubes.

Purified DNA should have an A260/A280 ratio between 1.7 and 2.0.

We recommend using a fluorometric method to accurately quantify DNA

If necessary, DNA should be diluted in 10mM Tris, pH 8.0; 0.1mM EDTA (TE) or nuclease-free H_2O before use.

The optimal amount of template DNA to use in genotyping is 10 ng per well.

Safety Information

Read the "Safety Information" sections of any reagents or kits specified in "Materials" Section before starting.

When working with chemicals always wear a suitable lab coat, disposable gloves, and protective goggles. For more information, please consult the appropriate Safety Data Sheets (SDSs) available from the specified product supplier.

Product reagents chemical component overview can be found in the SDSs of the DigitalTRACE™ Product and are available upon request.

Dispose product components as general medical waste.

TRACE Analysis[™] Software does not provide a mechanism to edit data files obtained from the dPCR System or result files once they are created.

Warnings

Use good laboratory practices for sample handling and tracking.

Use only recommended materials, procedures, and equipment.

Use sterile disposable pipettes and filtered pipette tips.

Wear appropriate personal protective equipment (*e.g.*, safety glasses, disposable gloves, and protective clothing) when handling samples and reagents.

Clean and disinfect all work surfaces with a 10% bleach (0.525% sodium hypochlorite) solution and follow with 70% ethanol, ensuring that all bleach residue is removed.

Assays should be run by individuals experienced in good laboratory practices and who have been previously trained to use the equipment by the original equipment manufacturer (OEM). Operate, calibrate and maintain all instruments and equipment according to procedures provided by the manufacturers.

To reduce the risk of contamination, the area where amplified DNA is handled must be physically isolated from the work areas for sample preparation and qPCR setup.

Do not use components past their expiration date.

Do not dilute reagents.

Visually inspect wells or tubes after pipetting steps to detect operator errors with pipetting, sample transfer, etc.

To prevent repeated freeze/thaw cycling of reagents during frozen storage, do not store reagents within freezers that use an automatic defrost function (*i.e.*, frost-free).

Avoid microbial and nuclease contamination of reagents when removing aliquots from reagent tubes.

To prevent contamination, after aliquots are removed do not return the remaining volume to the original tube.

Comply with all local, state, or national laws and regulations related to chemical storage and disposal.

CHEMICAL HAZARD. Ethanol is a flammable liquid and vapor. Exposure can cause eye, skin, and upper respiratory tract irritation. Prolonged or repeated contact can dry the skin. Exposure can cause central nervous system depression and liver damage. Keep away from heat, sparks, and flame. Read the MSDS and follow the handling instructions. Wear appropriate protective eyewear, clothing and gloves.

CHEMICAL HAZARD. Bleach (sodium hypochlorite) is a corrosive liquid and vapor. Exposure can cause severe irritation or damage to eyes, skin and the respiratory system. Harmful if swallowed. Prolonged or repeated contact can lead to sensitization (*e.g.,* irritation) if skin damage occurs during exposure. Medical conditions that can be aggravated by exposure to high concentrations of vapor or mist include heart conditions or chronic respiratory problems such as asthma, emphysema, chronic bronchitis or obstructive lung disease. Read the MSDS and follow the handling instructions. Wear appropriate protective eyewear, clothing, and gloves.

Shipping and Storage

DigitalTRACE[™] Genotyping Plates are shipped at ambient temperature. The DigitalTRACE[™] INDEL Monitoring Assays are shipped frozen.

Examine the shipment upon receipt and if the integrity of the products has been compromised during shipment, immediately contact your local customer support representative.

Upon receipt, the individual components should be stored according to the temperatures listed on the labels.

Note: When storage recommendations are observed, both unopened and opened/recapped tubes are stable until the expiration date indicated on the label. Genotyping plates are stable when stored in their original packaging. Do not use any component after the expiration date.

Do not use any component that visibly shows signs of having been compromised (e.g., particulate matter, presence of foreign debris, cloudy appearance, discoloration).

Technical Assistance

For technical assistance and more information:

Please contact your local distributor

or JETA Molecular - info@jetabv.com

www.jetamolecular.com

Krommewetering 101C 3543AN Utrecht The Netherlands

+31 (0)6 54 13 66 97

Principle of the Method

Background Information

The DigitalTRACE[™] and MultiTRACE[™] Genotyping Plates, DigitalTRACE[™] INDEL Assays and TRACE Analysis[™] Software meet the needs of any research application that requires highly sensitive detection and quantification of the genome of one individual in the background of another individual or individuals. A genetic chimera is an organism with two or more genetically distinct cell populations, *i.e.*, cell populations with different genomes.

Chimerism can arise in humans through a variety of means, such as inheritance, maternal-fetal stem cell trafficking during gestation, blood vessel sharing in fraternal twin gestation, blood transfusions, bone marrow transplantation, cord blood transplantation, and solid organ transplantation. The presence of two distinct human genomes in a sample can also occur simply through the mixing of human cells from more than one individual, for example, when two cell lines are cross-contaminated, or in forensic tissue samples.

The DigitalTRACE[™] INDEL assays are digital polymerase chain reaction (dPCR) assays based upon self-quenched, hydrolysis probe chemistry. In a dPCR reaction, a dye-labeled oligonucleotide probe enables the detection of a specific PCR product at the end PCR cycling. The high sensitivity is the result of the very large dynamic range of the real-time amplification method and is limited essentially by the input copy number of total DNA that can be added to the dPCR reaction. In the Monitoring test, the assays are formulated with the target in channel FAM and the reference assay (RNase P) in channel HEX.

The DigitalTRACE[™] HLA Assays are digital polymerase chain reaction (dPCR) assays based upon self-quenched, hydrolysis probe chemistry. The assays are formulated with the target in channel FAM and the reference assay (RNase P) in channel HEX. These assays are designed to detect the loss of HLA heterozygosity after haploidentical HSCT.

TRACE Analysis[™] Software was designed specifically for the DigitalTRACE[™] INDEL Assay Set. The software provides a streamlined workflow for both the Genotyping and Monitoring tests. The software guides the user through assay setup, performs data analysis, generates results reports and stores the data collected for samples over time.

Product Overview

The DigitalTRACE[™] System consists of DNA Genotyping plates, 70 individual DigitalTRACE[™] INDEL assays, 31 DigitalTRACE[™] HLA assays and TRACE Analysis[™] Software. The DigitalTRACE[™] INDEL Assays are a set of 70 genetic markers that are able to differentiate, and then quantify, the contributors to a human-mixed DNA sample. Each of the 70 assays is designed to a distinct bi-allelic insertion/deletion (INDEL) or copy number polymorphisms in the human genome. The DigitalTRACE[™] HLA assays are designed to detect the loss of a particular HLA allele after haploidentical HSCT. The TRACE Analysis[™] Software guides the user through reaction set-up for both screening and quantification, and analyzes the collected data. The procedure for determining the level of a genome of interest in a sample consists of two parts: a genotyping test and a quantification (monitoring) test.

Genotyping Test

In the initial genotyping test, the DNAs that comprise a mixed DNA sample are analyzed using a DigitalTRACE[™] or MultiTRACE[™] Genotyping Plate, to identify all of the informative assays for the samples. An informative assay is an assay for a marker allele that is present (positive) in one individual genome and absent (negative) in the other genome.

The DigitalTRACE[™] Genotyping Plate contains a set of 43 quantification assays and the reference (RNase P) assay that serves as both a positive control and a No Template Control (NTC).

The DigitalTRACE[™] EP QIAcuity Genotyping Plate represents an extended panel of dPCR markers that can be used for dPCR monitoring in the case of need for additional markers allowing to distinguish between donor and recipient DNA. This plate contains a set of 27 quantification assays and the reference (RNase P) assay that serves as both a positive control and a No Template Control (NTC).

The MultiTRACE[™] Genotyping Plate contains a set of 45 quantification assays and the reference (RNase P) assay that serves as both a positive control and a No Template Control (NTC).

Monitoring Test

In the Monitoring (quantification) test, two or more of the informative assays identified in the genotyping test is used to quantify the DNA of interest in an unknown sample. Any of the informative assays identified in the genotyping test can be used to perform a quantification test. The amount positive for the informative allele in the unknown sample is determined relative to the amount of the reference gene, and the result is expressed as a percentage (ratio). For example, a result of 5% indicates that there is 5% of genome A in the unknown sample.

The informativeness of a multi-locus genotyping panel is a measure of the probability of finding at least one informative assay between two individual genomes (or DNA samples). Informativeness is calculated from the population frequency estimates of the alleles used to make up a multi-locus genotyping panel, and thus differs between ethnic populations. In addition, the informativeness of any panel of polymorphic loci is higher in unrelated individuals than in related individuals.

The performance of the DigitalTRACE[™] System has been verified to a level of 0.1% minor component DNA in 150 ng total DNA.

DigitalTRACE Workflow

Genotyping Test

Genotyping Test Protocol

Genotyping Test Protocol - QIAcuity

Change the instrument type in the Preferences of the TRACE Analysis[™] Software to QIAcuity and Plate type to Qiacuity, v1.

To generate a new record in TRACE Analysis[™] Software, in the Section labeled "Recipient" enter the Recipient Name, Recipient Identifier and a unique Sample Identifier. While "Date of Birth" is an optional field for all samples, a "Date of Transplant" must be entered, if you ultimately want to have the data stored and reported in a temporal manner.

Re	cipient 🖌	^
Recipient First Name		
Recipient Last Name		
Recipient ID		
Sample ID		
Concentration ng/ul	100	
Date of Birth	XX-XX-XXXX 15	
Date of Transplant	XX-XX-XXXX 15	
Gender	O Male O Female	
Comment		
Disease Type	v	
D)onor 🛛 🗸 🔀	
Donor First Name		
Donor Last Name		
Donor ID		
Sample ID		
Concentration ng/ul	100	
Date of Birth	XX-XX-XXXX 15	
Gender	O Male O Female	
Comment		

For a sample which should be genotyped against the Recipient sample, enter the Donor Name, Donor Identifier and unique Sample Identifier. You can genotype up to eight samples on a single plate using TRACE Analysis[™] Software. TRACE Analysis[™] Software also allows you to virtually compare multiple samples, independent of when they were genotyped. Based on the data from verification studies, JETA Molecular recommends the use of 10 ng DNA input per well for genotyping. (DNA inputs are customized in the software's Preferences for Concentrations). Enter the concentrations of your samples to let the software calculate with.

After all samples to be comparatively genotyped are entered into the Sample window, press the "Screen" button to add the samples to the plate set up file. You will see the samples now added to the 96-well plate in the middle of the screen.

	1	2	3	4	5	6	7	8	9	10	11	12
Α	Tom 001 QIAMix(Tom 001 QIAMixt	Tom 001 QIAMix(Tom 001 QIAMix(Tom 001 QIAMix(Tom 001 QIAMixt	Tom 001 QIAMix(Tom 001 QIAMix(Tom 001 QIAMixt	Tom 001 QIAMixt	Tom 001 QIAMix(NTC NTC Mi
B	Alex 002 QIAMix(Alex 002 QIAMix(Alex 002 QIAMix(Alex 002 QIAMix(Alex 002 QIAMix(Alex 002 QIAMix(Alex 002 QIAMix(Alex 002 QIAMix(Alex 002 QIAMixt	Alex 002 QIAMixt	Alex 002 QIAMix(NTC NTC Miz
С	Julie 003 QIAMix(Julie 003 QIAMix(Julie 003 QIAMix(Julie 003 QIAMix(Julie 003 QIAMix(Julie 003 QIAMix(Julie 003 QIAMix(Julie 003 QIAMix(Julie 003 QIAMix	Julie 003 QIAMix(Julie 003 QIAMix(NTC NTC Mis
D	James 004 QIAMix(James 004 QIAMix(James 004 QIAMix(James 004 QIAMix(James 004 QIAMix(James 004 QIAMix(James 004 QIAMix(James 004 QIAMix(James 004 QIAMix(James 004 QIAMix(James 004 QIAMix(NTC NTC Mib
E	Peter 005 QIAMix(Peter 005 QIAMixt	Peter 005 QIAMix(Peter 005 QIAMix(Peter 005 QIAMix(Peter 005 QIAMix(Peter 005 QIAMix(Peter 005 QIAMix(Peter 005 QIAMix(Peter 005 QIAMix(Peter 005 QIAMixt	NTC NTC Mia
F	Barbara 006 QIAMix(Barbara 006 QIAMix(Barbara 006 QIAMix(Barbara 006 QIAMix(Barbara 006 QIAMix(Barbara 006 QIAMix(Barbara 006 QIAMix(Barbara 006 QIAMix(Barbara 006 QIAMix(Barbara 006 QIAMix(Barbara 006 QIAMix(NTC NTC Mi
G	John 007 QIAMix(John 007 QIAMix(John 007 QIAMix(John 007 QIAMix(John 007 QIAMix(John 007 QIAMix(John 007 QIAMix(John 007 QIAMix(John 007 QIAMix(John 007 QIAMix(John 007 QIAMix(NTC NTC Mib
Н	Ashley 008 QIAMixt	Ashley 008 QIAMixt	Ashley 008 QIAMixt	Ashley 008 QIAMix(Ashley 008 QIAM <u>ix</u> (Ashley 008 QIAM <u>ix</u> t	Ashley 008 QIAM <u>ix</u> t	Ashley 008 QIAMix(Ashley 008 QIAMixt	Ashley 008 QIAMixt	Ashley 008 QIAMixt	NTC NTC Mis

The colors in the small plate images (Sample View and Assay View) at the bottom of the window are enabled in the large plate image, by touching the colored plate image of interest. By touching the same image again, the large plate colors disappear. (For Genotyping, the assays are already in the wells and are not added by the operator).

Once the samples have been added virtually to your plate, and the experiment name have been

entered, press the "Export Setup to PCR" 🖒 button.

Browse to the location where you want the file saved and name it as you wish. This file can then be imported into your dPCR machine's DigitalTRACE template to execute the dPCR analysis.

Once the file is saved, TRACE Analysis[™] Software generates a protocol, based on the experimental inputs and the settings in the preferences menu. Print out this protocol.

- 1. Set up all reactions in a pre-PCR lab, under ambient conditions without ice.
- Collect all DNA samples to be screened, as well as QIAcuity typing plate together with 4x Probe PCR Master Mix and de-ionized H₂O.
- 3. Briefly vortex and centrifuge all tubes before opening.
- For each sample to be genotyped, lable a tube and a Mix containing sample DNA, de-ionized H₂O and 4x Probe PCR Master Mix as suggested by TRACE Analysis[™] Software in Table 1. A No Template Control (NTC) Mix is prepared with de-ionized H₂O and 4x Probe PCR Master Mix.
 - * Make a Ten-Fold Dilution (1:10) of Sample

Table 1. Master Mix Composition

Sample 1 dPCR Mix	1 x	13 x
4x Probe PCR Master Mix	3,0 µl	39,0 μl
001 DNA	0,5 µl	*6,5 μl
H₂O	8,5 µl	110,5 μl
	12,0 µl	156,0 µl
Sample 2 dPCR Mix	1 x	13 x
4x Probe PCR Master Mix	3,0 µl	39,0 μl
002 DNA	0,5 µl	*6,5 μl
H₂O	8,5 µl	110,5 μl
	12,0 µl	156,0 μl

NTC dPCR Mix	1 x	10 x
4x Probe PCR Master Mix	3,0 µl	30,0 μl
H ₂ O	9,0 μl	90,0 μl
	12,0 µl	120,0 µl

- 5. Vortex each tube to thoroughly mix the contents and centrifuge briefly to collect the reaction mix at the bottom of the tube.
- 6. Remove the adhesive cover from the genotyping plate.
- Deliver 13.2 µl of each Sample Mix and NTC mix to the Typing plate as defined in TRACE Analysis™ Software's Assay Layout view.
- An automated multichannel pipette is recommended in this step to minimize pipetting repetition and increase accuracy.
- 9. Visually inspect plate wells from the sides and bottom to confirm consistent volume.
- 10. Seal the plate with an Adhesive Film.
- IMPORTANT! Vortex the plate to mix the contents of each well. Centrifuge the plates briefly using a plate centrifuge to collect the contents at the bottom of the wells.
- 12. Remove the Adhesive cover very carefully.
- 13. Transfer 12 μl of each prepared reaction mix into a single column of a 96-well 8.5K Nanoplate. Seal the Nanoplate with the compatible plate sealer.
- 14. Load the Nanoplate into the QIAcuity digital PCR system.
- 15. Launch the QIAcuity Software Suite.
- 16. Open the DigitalTRACE typing template and import the Sample Setup sheet generated by TRACE Analysis™ Software.
- 17. Save the file and start the run.

Genotyping Test Protocol - Biorad

Change the instrument type in the Preferences of the TRACE Analysis[™] Software to Biorad QX-200 and Plate type to MultiTRACE, v3.

To generate a new record in TRACE Analysis[™] Software, in the Section labeled "Recipient" enter the Recipient Name, Recipient Identifier and a unique Sample Identifier. While "Date of Birth" is an optional field for all samples, a "Date of Transplant" must be entered, if you ultimately want to have the data stored and reported in a temporal manner.

Re	cipient 🗸	^
Recipient First Name		
Recipient Last Name		
Recipient ID		
Sample ID		
Concentration ng/ul	100	
Date of Birth	XX-XX-XXXX 15	
Date of Transplant	XX-XX-XXXX 15	
Gender	O Male O Female	
Comment		
Disease Type	U	
D	onor 🗸 🗙	
Donor First Name		
Donor Last Name		
Donor ID		
Sample ID		
Concentration ng/ul	100	
Date of Birth	XX-XX-XXXX 15	
Gender	O Male O Female	
Comment		

For a sample which should be genotyped against the Recipient sample, enter the Donor Name, Donor Identifier and unique Sample Identifier. You can comparatively genotype up to four samples on a single plate using TRACE Analysis[™] Software. TRACE Analysis[™] Software also allows you to virtually compare multiple samples, independent of when they were genotyped. Based on the data from verification studies, JETA Molecular recommends the use of 10 ng DNA input per well for genotyping. (DNA inputs are customized in the software's Preferences for Concentrations). Enter the concentrations of your samples to let the software calculate with. Once all samples to be comparatively genotyped are entered into the Sample window, press the "Screen" button to add the samples to the plate set up file. You will see the samples now added to the 96-well plate in the middle of the screen.

	_											
	1	2	3	4	5	6	7	8	9	10	11	12
Α	Tim	Tim	Tim	Bert	Bert	Bert	Ken	Ken	Ken	Jenny	Jenny	Jenny
	1001	1001	1001	1002	1002	1002	1003	1003	1003	1004	1004	1004
	Mix028	Mix036	Mix044	Mix028	Mix036	Mix044	Mix028	Mix036	Mix044	Mix028	Mix036	Mix044
В	Tim	Tim	Tim	Bert	Bert	Bert	Ken	Ken	Ken	Jenny	Jenny	Jenny
	1001	1001	1001	1002	1002	1002	1003	1003	1003	1004	1004	1004
	Mix029	Mix037	Mix045	Mix029	Mix037	Mix045	Mix029	Mix037	Mix045	Mix029	Mix037	Mix045
С	Tim	Tim	Tim	Bert	Bert	Bert	Ken	Ken	Ken	Jenny	Jenny	Jenny
	1001	1001	1001	1002	1002	1002	1003	1003	1003	1004	1004	1004
	Mix030	Mix038	Mix046	Mix030	Mix038	Mix046	Mix030	Mix038	Mix046	Mix030	Mix038	Mix046
D	Tim	Tim	Tim	Bert	Bert	Bert	Ken	Ken	Ken	Jenny	Jenny	Jenny
	1001	1001	1001	1002	1002	1002	1003	1003	1003	1004	1004	1004
	Mix031	Mix039	Mix047	Mix031	Mix039	Mix047	Mix031	Mix039	Mix047	Mix031	Mix039	Mix047
Е	Tim	Tim	Tim	Bert	Bert	Bert	Ken	Ken	Ken	Jenny	Jenny	Jenny
	1001	1001	1001	1002	1002	1002	1003	1003	1003	1004	1004	1004
	Mix032	Mix040	Mix048	Mix032	Mix040	Mix048	Mix032	Mix040	Mix048	Mix032	Mix040	Mix048
F	Tim	Tim	Tim	Bert	Bert	Bert	Ken	Ken	Ken	Jenny	Jenny	Jenny
	1001	1001	1001	1002	1002	1002	1003	1003	1003	1004	1004	1004
	Mix033	Mix041	Mix049	Mix033	Mix041	Mix049	Mix033	Mix041	Mix049	Mix033	Mix041	Mix049
G	Tim	Tim	Tim	Bert	Bert	Bert	Ken	Ken	Ken	Jenny	Jenny	Jenny
	1001	1001	1001	1002	1002	1002	1003	1003	1003	1004	1004	1004
	Mix034	Mix042	Mix050	Mix034	Mix042	Mix050	Mix034	Mix042	Mix050	Mix034	Mix042	Mix050
н	Tim 1001 Mix035	Tim 1001 Mix043	NTC RNaseP	Bert 1002 Mix035	Bert 1002 Mix043	NTC RNaseP	Ken 1003 Mix035	Ken 1003 Mix043	NTC RNaseP	Jenny 1004 Mix035	Jenny 1004 Mix043	NTC RNaseP

Once the samples have been added virtually to your plate, and the experiment name have been entered, press the "Export Setup to PCR" button.

Browse to the location where you want the file saved and name it as you wish. This file can then be imported into your dPCR machine's DigitalTRACE template to execute the dPCR analysis. Once the file is saved, TRACE Analysis[™] Software generates a protocol, based on the experimental inputs and the settings in the preferences menu. Print out this protocol.

- 1. Set up all reactions in a pre-PCR lab, under ambient conditions without ice.
- 2. Open a MultiTRACE[®] Genotyping Plate Pack and remove the genotyping plate.
- 3. Label the genotyping plate with the genotyping test name.
- Collect the four DNA samples to be screened, as well as 2x ddPCR Supermix Master Mix and de-ionized H₂O. Briefly vortex and centrifuge all tubes before opening.
- 5. Label five 1.5 ml microcentrifuge tubes:
 - a) Sample 1 Mix
 - b) Sample 2 Mix
 - c) Sample 3 Mix
 - d) Sample 4 Mix
 - e) NTC Mix
- 6. For each sample to be genotyped, prepare a ddPCR Mix containing sample DNA, de-ionized H₂O and 2x ddPCR Supermix as suggested by TRACE Analysis[™] Software in Table 1. A No Template Control (NTC) Mix is prepared with de-ionized H₂O and 2x ddPCR Supermix.

Sample 1 dPCR Mix	1 x	27 x
2x ddPCR Supermix	11,0 µl	297,0 μl
1001 DNA	0,5 µl	13,5 µl
H₂O	10,5 µl	283,5 µl
	22,0 µl	594,0 µl
Sample 2 dPCR Mix	1 x	27 x
2x ddPCR Supermix	11,0 µl	297,0 μl
1002 DNA	0,5 µl	13,5 µl
H ₂ O	10,5 µl	283,5 µl
	22,0 µl	594,0 µl
Sample 3 dPCR Mix	1 x	27 x
2x ddPCR Supermix	11,0 µl	297,0 μl
1003 DNA	0,5 µl	13,5 µl
H₂O	10,5 µl	283,5 µl
	22,0 µl	594,0 μl
Sample 4 dPCR Mix	1 x	27 x
2x ddPCR Supermix	11,0 µl	297,0 μl
1004 DNA	0,5 µl	13,5 µl
H₂O	10,5 µl	283,5 µl
	22,0 µl	594,0 µl
NTC dPCR Mix	1 x	5 x

Table 1. Master Mix Composition

	22,0 µl	110.0 µl
H₂O	11,0 µl	55,0 µl
2x ddPCR Supermix	11,0 µl	55,0 µl

- Vortex each tube to thoroughly mix the contents and centrifuge briefly to collect the reaction mix at the bottom of the tube.
- 8. Remove the adhesive cover from the genotyping plate.
- 9. Dispense 22 μl of the Sample 1 Mix into Wells A1-G3 by columns of the genotyping plate.
- 10. Dispense 22 μl of the Sample 2 Mix into Wells A4-G6 by columns of the genotyping plate.
- 11. Dispense 22 μl of the Sample 3 Mix into Wells A7-G9 by columns of the genotyping plate.
- 12. Dispense 22 μl of the Sample 4 Mix into Wells A10-G12 by columns of the genotyping plate.
- 13. Dispense 22 μl of the 5X PCR Master Mix/NTC mixture to wells H3, H6, H9, H12.
- 14. A repeat pipettor is recommended to minimize pipetting repetition and increase accuracy.
- 15. Refer to the DNA Sample Layout Plate Layout at the end of the protocol.
- 16. Visually inspect plate wells from the sides and bottom to confirm consistent volume.
- Seal the plate completely with MicroAmp[®] Optical Adhesive Film using the MicroAmp[®] Adhesive Film Applicator.
- IMPORTANT! Vortex the plate to mix the contents of each well. Centrifuge the plates briefly using a plate centrifuge to collect the contents at the bottom of the wells.
- 19. Remove the Adhesive cover very carefully.
- 20. !!!The following steps from 21 to 26 are only for manual droplet generator users:
- 21. Transfer 20 µl of each prepared sample to the sample wells (middle row) of the DG8 cartridge.
- 22. Add 70 μl of droplet generation oil to each oil well of the DG8 cartridge.
- 23. Hook the gasket over the cartridge holder using the holes on both sides.
- 24. Load the cartridge in the QX200 droplet generator.
- 25. When droplet generation is complete, remove the disposable gasket from the holder and discard it.
- 26. Pipet 40 µl of the contents of the droplets into a single column of a 96-well PCR plate.
- Seal the PCR plate with foil plate seals that are compatible with the PX1 PCR plate sealer and the needles in the QX200 droplet reader.
- 28. Place the plate into the thermal cycler for PCR amplification.
- 29. Load the plate after amplification into QX200 droplet reader.
- 30. Import the Sample Setup sheet generated by TRACE Analysis™ Software.
- 31. Save the file and start the droplet reader.

Experiment Setup in QIAcuity Suite Software

Create a new QIAcuity Plate by selecting New Plate. Load a template by selecting Plate templates and import the appropriate DigitalTRACE Genotyping template

Import plate from ZIP file
Please select a file
Choose a file or drag it here
Cancel Import

Press Save Plate. The new plate will appear in the main window of the QIAcuity Software Suite.

Updated 2 seconds ago	96 📖
DigitalTRACE 96-well Typing template	<1MB
 Defined 	

Click on the plate name to open the plate configuration procedure. Type in a new plate name.

Import the Sample Setup sheet (.csv) generated by TRACE Analysis[™] Software by selecting Plate layout tab and CSV import/export.

Plate List												
										(-	CSV import/exp	ort
										Active selection	: - Selected wells:	: 0
	1 2	3 4	4 5	6 7	8	9	10	11	12			
А												
В												
с							\bigcirc		\bigcirc			
D									\bigcirc			
E									\bigcirc			
F									\bigcirc			
G							\bigcirc		\bigcirc			
н									\bigcirc			
55 Sample ID C Control XXX Non template control IIII Inte	ernal control											
										Saved	Ø Don	

When importing the plate setup, select both options, "Overwrite existing data" and "Create Reaction Mixes, Samples if not defined in the Plate".

Import from CSV 🛛 🛞
Overwrite existing data Create Reaction Mixes, Samples, if not defined in the Plate
Choose a file or drag it here
220407 test.csv File size: 2.51 KB. Cancel Import

Inspect if all your selected samples are represented on the Plate figure.

Select Done to finish the setup. Start the run.

Biorad Droplet Reader Setup in QuantaSoft

To read the signal after the PCR cycling was completed, setup an experiment in QuantaSoft. Load a template by clicking on Load

Quantacioft Version 1.	7,4.0	917						
BIO RAD Setup		Nup Nute Save As Fergitate Num Uner	Eperments ABS RED CNV1 CNV2 CNV2 CNV3 CNV4 GEX		Options			
Run		01	02	03	04	05	06	
Analyze		8	8	8	8	8	8	8
(C)	-							
About	8	8	8	8	Η	8	8	Η
Contact Support	_							
	c	8	8	8	8	8	8	Β
	D	8	8	8	8	8	8	8
A	E	8	8	8	8	8	8	8

Select QS Setup CSV Files as file format

Import the appropriate DigitalTRACE Genotyping template

Start the droplet reading run.

Thermal Cycling and imaging Protocol for DigitalTRACE[™] Products

The DigitalTRACE[™] System will deliver optimal results when the following thermal profile is used in dPCR.

Thermal cycling and imaging protocol - QIAcuity

Number of cycles	Temperature	Time
1	95 °C	3 min
40	95 °C	15 s
40	60 °C	30 s

Use the following imaging parameters:

Channel	Exposure duration	Gain		
Green	500 ms	6		
Yellow	500 ms	6		
Orange	Off	Off		
Red	300 ms	4		
Crimson	400 ms	4		

Thermal cycling protocol - Biorad

Number of cycles	Temperature	Time	
1	95 °C	10 min	
40	94 °C	30 s	
40	59 °C	60 s	
1	98 °C	10 min	

Genotyping Data Analysis and Report

Genotyping Data Analysis and Report - QIAcuity

After the QIAcuity run has finished, check in the QIAcuity Software Suite if the automatic thresholds are correct.

	d681 (8 wels)							Add to report
	Green							
	A1	81	C1	D1	El	F1	G1	H1
70			ind also b		a sate of the second second		an a	
60			THE SECTION OF		and the second second		San Care	
50			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
40								
30					1 and		1.001	
20		San						and a state of the
10								-
0	0	0	0	0	0 0	0	0	0
				Analyze	d partition			

Select all wells on the plate and analyze per target (not per channel), export data by selecting Export to CSV.

List	Signalmap	Heatmap	Histogram	1D Scatterplot	2D Scatterplot	Concentration of	iagra	m						
											Add to repor	t 🗌 Show mean	values for replicates	- Export to CSV
	Sample/NTC/Control		Reaction Mix		Target			Control type	Concentration * copies/µL	CI (95%)	Partitions valid	positive	negative	Threshold
					d681				0.000		8191	0	8191	30.86
A1	c10E 221010		OIANE-001		d971			-	0.372	147.5%	8191	1	8190	53.81
AL	01 0105 221010		Orward A		d113				0.000	-	8191	0	8191	20.66
					d597				149.4	9.9%	8191	392	7799	24.86
					d777				0.376	147.5%	8271	1	8270	21.93
42	c105 221010				d396				0.000		8271	0	8271	34.68
742	01 0103 221010		() Commons		d892				0.000		8271	0	8271	21.93
					d333				180.2	9.1%	8271	466	7805	24.23

Import dPCR data to TRACE Analysis[™] Software by clicking the "Import PCR Data" [™] button. Browse to the location of your exported dPCR data file and select it.

TRACE Analysis[™] Software will perform a quality analysis on the data and will present the data in the plate view.

There are three quality scores given to genotyping data: 1) positive (green), 2) negative (blue) and 3) atypical (red).

These values are represented accordingly in the plate image by three different colors:

An atypical assay results will exclude the assay from consideration as a potentially informative assay for all samples grouped in the analysis.

After inspecting the quality of the data, pressing the "Calculate" Calculate button makes TRACE Analysis™ perform comparative genotyping analysis. It will determine and display markers which are informative for all samples in a group.

Press the "Report" Report... button to generate the Genotyping Report

TRACE Analysis[™] Software displays each assay which was informative for a single sample in the group being compared, and it also displays the chromosomal location of the informative assays, as well as the positive or negative status of the assays for visual inspection.

The report generated from a TRACE Analysis[™] Genotyping experiment may be sorted to provide a custom view of the data.

ReportWind	low													_		×
						Expe	erime	ent re	port							
Scope:	• E	ntire	experiment										Column		Order	
beoper	0														-	
	∽т	rans	plantation I on	1							S	ort by:	Informa	itive v	Descend	linç v
Format:	• _{Fi}	ull									T	nen by:	Delta O	۹ v	Ascendi	ng v
	0 5	umn	narized													
		Giiiii	i i i i i i i i i i i i i i i i i i i													
Save as																
	1															
🥑 🗋 🔍	⊇, ₽															
	Recipie	ent 1			Don	or 1										^
	Name:		Tom		Nam	e:	Al	ex								1.1
	ID:		46468		ID:		65	4654								
	Gender	r:	Unknown		Gen	der:	Ur	nknown								
	Disease	e typ	e: -		Date	of birth	h: -									1.1
	Date of	f birt	h: -		Com	ments:	-									
	Transpl	ant	-													
	date:															
	Comme	ents:	-													
	Used As	says ocus	Informative for	Recipient	CNV	Concen	Posi-	Partition	nsDonor 1	CNV	Concen-	Posi-	Partitions			
				1		tration	tives	(valid)			tration	tives	(valid)			
	d120 3	2q	Tom	Positive	2,2	390,10	976	8274	Negative	0,0	0,00	0	8207			
	d198 3	7q	Tom	Positive	1,1	187,80	482	8260	Negative	0,0	0,00	0	8246			
	d222 (6p	Tom	Positive	1,0	172,20	443	8242	Negative	0,0	0,00	0	8283			
	d355 3	90 90	Tom	Positive	0.8	180,20	369	82/1	Negative	0,0	0,00	2	8268			
	d493 1	1p	Tom	Positive	0,9	165,20	429	8210	Negative	0,0	0,00	0	8276			
	d555 :	15q	Tom	Positive	1,0	177,50	459	8247	Negative	0,0	0,00	0	8240			
	d585	2р	Tom	Positive	1,0	182,50	460	8224	Negative	0,0	0,00	0	8256			
	d824	22q	Tom	Positive	1,1	191,50	495	8207	Negative	0,0	0,00	0	8276			
	d923 :	13q 10	Tom	Positive	0,9	159,20	411	8214	Negative	0,0	0,00	0	8264			
	d990 7	70	Tom	Positive	1,0	189.90	430	8239	Negative	0,0	0.00	0	8283			
	d102	15g	Alex	Negative	0,0	0,00	0	8259	Positive	1,1	249,80	615	8269			
	d157 :	18q	Alex	Negative	0,0	0,00	0	8224	Positive	1,1	265,50	654	8256			
	d396 :	1q	Alex	Negative	0,0	0,00	0	8271	Positive	1,0	229,00	583	8268			
	d441 :	1q	Alex	Negative	0,0	0,00	0	8260	Positive	0,9	214,50	532	8246			
	d574	2q	Alex	Negative	0,0	0,00	0	8259	Positive	1,0	233,50	576	8266			
	d678	2q	Alex	Negative	0,0	0,00	0	8247	Positive	1,1	245,50	1102	8234			
	d916	" ρ 10α	Alex	Negative	0,0	0,00	0	8214	Positive	2,2	274.40	676	8253			
	d962	 14g	Alex	Negative	0,0	0,00	0	8210	Positive	0,9	212,50	533	8276			
	d971 (6q	Alex	Negative	0,0	0,37	1	8191	Positive	1,0	226,60	576	8224			
	d113 8	8q	None	Negative	0,0	0,00	0	8191	Negative	0,0	0,00	0	8224			

To create an anonymized report, go to the <u>Anonymized Reporting</u> Section.

Genotyping Data Analysis and Report - Biorad

After the reading process has finished, check in the QuantaSoft Software if the automatic thresholds are correct.

Select all wells on the plate and export data by selecting Export CSV.

Import dPCR data to TRACE Analysis[™] Software by clicking the "Import PCR Data" ¹ button. Browse to the location of your exported dPCR data file and select it.

TRACE Analysis[™] Software will perform a quality analysis on the data and will present the data in the plate view.

There are three quality scores given to genotyping data: 1) positive (green), 2) negative (blue) and 3) atypical (red).

These values are represented accordingly in the plate image by three different colors:

An atypical assay results will exclude the assay from consideration as a potentially informative assay for all samples grouped in the analysis.

After inspecting the quality of the data, pressing the "Calculate" Calculate button makes TRACE Analysis™ perform comparative genotyping analysis. It will determine and display markers which are informative for all samples in a group.

Press the "Report" Report... button to generate the Genotyping Report

TRACE Analysis[™] Software displays each assay which was informative for a single sample in the group being compared, and it also displays the chromosomal location of the informative assays, as well as the positive or negative status of the assays for visual inspection.

The report generated from a TRACE Analysis[™] Genotyping experiment may be sorted to provide a custom view of the data.

Monitoring Test

Once recipient specific markers have been found, quantification is performed for the monitoring of chimerism. In the Monitoring test, one or more of the informative assays is used to quantify the DNA of interest in an unknown sample. Any of the informative assays identified in the genotyping can be used to perform monitoring. The fraction of DNA positive for the informative marker in the unknown composition is measured using dPCR.

Monitoring Test Protocol

Monitoring Test Protocol - QIAcuity and Biorad

For Post samples wherein genotyping data was either determined using qPCR or not determined using TRACE Analysis[™] Software, please see section on <u>Assigning Informative</u> <u>Assays</u>.

In order to perform a Monitoring experiment with TRACE Analysis[™] Software using both the QIAcuity or Biorad dPCR instrument, select the name of your Recipient Sample in the Sample Entry window from the drop-down menu.

Once the Recipient Sample name is found and selected, choose from a pop-up window to use monitoring plate format which must be selected before in the Preferences. The selected sample's identifying information initially entered will appear.

Type in the Post sample information:

A unique Sample ID must be entered in the Sample ID field.

A sample Date must be entered.

Check the Sample type which is being tested - Sample Types can be defined by the User in the Preferences menu.

Click the plus sign next to the "Add Sample" tab

In the Informative Assays window, choose the loci to be tested by selecting assays from the list based on the screening test results.

A positive control (UPC) and a negative control (NTC) is automatically added to the plate layout.

You can toggle between coloring for the Sample View and the Assay View by pressing the appropriate small plate at the bottom of the window. One View shows the placement of monitoring and control samples. The other view shows the placement of the Assays.

Monitoring Samples are arranged into groups by TRACE Analysis[™] Software, based on the Preferences set for the monitoring machine. You can drag the wells to rearrange the samples within the plate. In this case, both controls were placed to the first column.

	1	2	3	4	5	6	7	8	9	10	11	12	
Α	Basti B Post20 d252												
В	Basti B Post20 d472												
) C	Basti B Post20 d252												ſ
D	Basti B Post20 d472												
E	UPC d472												
F	UPC d252												ļ
G	NTC d472												
Н	NTC d252												
Indicidid dicidid Experiment name: Indicidid dicidid Indicidid dicidid Indicidid dicidid Indicidid dicidid Indicidid dicidid Indicidid dicidid Indicidid dicidid Indicidid Indicidid dicidid Indicidid Indicidid dicidid Indicidid Indicidid dicidid Indicidid Indicidid dicidid Indicidid													
					bla	nka							
	Sam	ole viev	N							1	Assav v	/iew	

Proceed to add more samples to fill the plate as per your needs.

Once all samples have been added to your plate, press the black "Export Setup to PCR" to button.

Browse to the location where you want the file saved and name it as you wish. This file can then be imported into your dPCR machine's template file to execute the dPCR analysis.

Once the file is saved, TRACE Analysis[™] Software generates a protocol, based on the experimental inputs and the settings in the preferences menu.

The following protocol is an example output from TRACE Analysis[™] Software for a Monitoring test using QIAcuity dPCR:

- 1. Set up all reactions in a pre-PCR lab, under ambient conditions without ice.
- 2. Briefly vortex and centrifuge all tubes before opening.
- 3. Prepare DNA dilutions as specified in Table 1:

Table 1. DNA dilutions									
No.	Name	Sample ID	Concentration	Sample	Water	Total	Amount per		
				Volume	Volume	Volume	Reaction		
1	Post Sample	Post_test	26 ng/µl	12,69 µl	48,91 µl	61,60 µl	150 ng		
2	Post Sample	Post2_test	41 ng/µl	8,05 µl	53,55 µl	61,60 µl	150 ng		

4. Prepare for chosen informative dPCR Assay the following mixture:

	Table 2. Master Mix + dPCR Assay mixture							
Assay Mix	QIAcuity 4x	dPCR 20x assay	Total Volume					
	Master Mix	mix [µl]						
d359	46,00 μl	9,20 µl	55,20 µl					
d626	46,00 μl	9,20 µl	55,20 µl					

5. IMPORTANT! Vortex at least 5 seconds and spin briefly each prepared Master Mix + dPCR Assay mixture.

- Deliver 13,2 µl of QIAcuity Probe Master Mix + dPCR Assay Mix to a 96-well plate as defined in TRACE Analysis™ Software's Assay Layout view.
- Add 30,8 µl of each Sample DNA dilution as indicated by TRACE Analysis[™] Software's Layout View. Where NTC and UPC are indicated add 30,8 µl water for NTC and 30,8 µl from Universal Positive Control for UPC.
- IMPORTANT! Vortex at least 15 seconds the 96-well plate to mix the contents of each reaction. Centrifuge the 96well plate briefly using a microcentrifuge.
- 9. Transfer 40 μl of each prepared reaction mix into a Nanoplate. Seal the Nanoplate with the compatible plate sealer.
- 10. Load the Nanoplate into the QIAcuity digital PCR system.
- 11. Launch the QIAcuity Software Suite.
- 12. Open the DigitalTRACE template and import the Sample Setup sheet generated by TRACE Analysis™ Software.
- 13. Save the file and start the run.

Set up the experiment in the QIAcuity Software Suite like a Genotyping test by using the same cycling parameters and use the following imaging parameters:

Number of cycles	Temperature	Time
1	95 °C	3 min
40	95 °C	15 s
40	60 °C	30 s

Channel	Exposure duration	Gain		
Green	500 ms	6		
Yellow	500 ms	6		
Orange	Off	Off		
Red	Off	Off		
Crimson	Off	Off		

Then load a template by selecting Plate templates and import the appropriate DigitalTRACE Monitoring template. Press Save Plate.

Import the Sample Setup sheet (.csv) generated by TRACE Analysis[™] Software by selecting Plate layout tab and CSV import/export.

Import plate setup and select both options, Overwrite existing data and Create Reaction Mixes, Samples if not defined in the Plate.

Inspect if all your selected samples are represented on the Plate figure. Select Done to finish the setup.

Start the run.

After the QIAcuity run has finished, check in the QIAcuity Software Suite if the automatic thresholds are correct.

Select all wells on the plate and analyze per target (not per channel), export data by selecting Export to CSV.

The following protocol is an example output from TRACE Analysis[™] Software for a Monitoring test using Biorad ddPCR:

- 1. Set up all reactions in a pre-PCR lab, under ambient conditions without ice.
- 2. Briefly vortex and centrifuge all tubes before opening.
- 3. Prepare DNA dilutions as specified in Table 1:

	Table 1. DNA dilutions											
No.	Name	Sample ID	Concentration	Sample	Water	Total	Amount per					
				Volume	Volume	Volume	Reaction					
1	Basti Bob	Post201	20 ng/µl	17,25 μl	5,52 µl	22,77 μl	150 ng					
2	Basti Bob	Post202	20 ng/µl	17,25 µl	5,52 µl	22,77 µl	150 ng					

4. Prepare for chosen informative dPCR Assay the following mixture:

	10010 210	ar on supermix r ar	on Abbuy mixture
Assay	ddPCR supermix	dPCR assay [uL]	Total Volume
	for probes (no		
	dUTPs) [uL]		
d252	46,00 μl	4,60 µl	50,60 µl
d472	46,00 μl	4,60 µl	50,60 µl

Table 2. ddPCR Supermix + dPCR Assay mixture

- Deliver 12.1 µl of ddPCR Supermix + dPCR Assay mixture to a 8 strip PCR tube as defined in TRACE Analysis[™] Software's Assay Layout view.
- Add 9.9 µl of each Sample DNA dilution and water for NTC wells as indicated by TRACE Analysis[™] Software's Layout View.
- IMPORTANT! Vortex the 8 strip tube to mix the contents of each reaction. Centrifuge the 8 strip tubes briefly using a microcentrifuge.
- 8. !!!The following steps from 9 to 14 are only for manual droplet generator users:
- 9. Transfer 20 µl of each prepared sample to the sample wells (middle row) of the DG8 cartridge.
- 10. Add 70 μl of droplet generation oil to each oil well of the DG8 cartridge.
- 11. Hook the gasket over the cartridge holder using the holes on both sides.
- 12. Load the cartridge in the QX200 droplet generator.
- 13. When droplet generation is complete, remove the disposable gasket from the holder and discard it.
- 14. Pipet 40 µl of the contents of the droplets into a single column of a 96-well PCR plate.
- 15. Seal the PCR plate with foil plate seals that are compatible with the PX1 PCR plate sealer and the needles in the QX200 droplet reader.
- 16. Place the plate into the thermal cycler for PCR amplification.
- 17. Load the plate after amplification into QX200 droplet reader.
- 18. Import the Sample Setup sheet generated by TRACE Analysis™ Software.
- 19. Save the file and start the droplet reader.

Use the same cycling parameters as for a Genotyping test:

Number of cycles	Temperature	Time	F
1	95 °C	10 min	
40	94 °C	30 s	
40	59 °C	60 s	
1	98 °C	10 min	

The droplet reading process is the same as for a Genotyping test.

After the reading process has finished, check in the QuantaSoft Software if the automatic thresholds are correct.

Select all wells on the plate and export data by selecting Export CSV.

Monitoring Data Analysis and Report

Import dPCR data by clicking the "Import PCR Data" button , and browse to the location of your exported dPCR data file and select it.

TRACE Analysis[™] Software uses a light green/dark green/light blue coding for well highlighting.

Light green wells represent post samples. Dark green wells represent the positive control DNA. Light blue wells represent non-template control (NTC)

The calculations for each sample are displayed in the right-hand Result window.

			Result					
R001 22	04 R001 22	04 🚮						
Sample	Type	Date	Target	Chr.	CNV	Ratio	DNA (%)	DNA (9
PPP0.1	cfDNA	07-07-2023	007	9p	0.98	0.00042	0.08	0
PPP1	cfDNA	03-07-2023	007	9p	0.98	0.00524	1.05	1
PPP10	cfDNA	28-06-2023	007	9p	0.98	0.05113	10.23	1
PPP10	cfDNA	28-06-2023	010	13q	0.92	0.04667	9.33	1
PPP0.1	cfDNA	07-07-2023	010	13q	0.92	0.00055	0.11	0
PPP1	cfDNA	03-07-2023	010	13q	0.92	0.00442	0.88	0
PPP10	cfDNA	28-06-2023	021	1p	0.97	0.04484	8.97	9
PPP0.1	cfDNA	07-07-2023	021	1p	0.97	0.00060	0.12	0
PPP1	cfDNA	03-07-2023	021	1p	0.97	0.00465	0.93	0

As more data is collected for a particular sample over time, TRACE Analysis[™] Software provides

a longitudinal view.

To view the composite set of data for an individual sample, press the "Overview" button

Activating this action takes you to a screen showing all the information input for a particular group of samples as well as all of their genotyping and monitoring data.

Assay Filtering from Monitoring Reports

Assay Filtering is a feature which allows a user to selectively remove all data from a particular assay in the final report. This may be important, for example, if one pipette tip from a multichannel pipette did not properly dispense the necessary reagents to a set of reactions. While the data may appear to have good precision - all negatives in this example - it may not be accurate.

In the following image, there is a failure of Assay d361 in the selected sample.

[⊈] TRACE Analysis™ File: View Help										- ø ×
New Screen Quant					rî) [J		VT	Q [1 🚔	※?0
	Data analysis						Resu	lt		
	$ \begin{array}{c} 1 \\ 1 \\ 2 \\ 3 \\ 3 \\ 6 \\ c \\ c$			A 122558/4 12 Sample Post3 Post3 Post3	255874 Type DNA 07 DNA 07 DNA 07	Date 7-09-2023 7-09-2023 7-09-2023	Target Ch d120 20 d252 80 d361 12	r. CNV q 1.00 0 q 1.00 0 q 1.00 0	Ratio DNA (1 1.00242 0.48 1.00320 0.64 1.49873 99.75	50 DNA (50) + CNV 0.48 0.64 5 99.75
) 12255874 1 Sample Post3	2255874 Type DNA	Date 07-09-2023	Target d120	Chr. 2q	CNV 1.00	Ratio 0.00242	DNA (%) 0.48	DNA (%) + CNV 0.48
		Post3 Post3	DNA	07-09-2023	d252 d361	8q 12q	1.00	0.00320	99.75	99.75
Sample ID	Acce	to								
Track Post1										
Track Post3		V								
Track Post4										
Track Post2										
Track Post5										
									Select	assays Report
Show rawdata		Reject	Calculate							

If the plate is approved, under the Results panel, there is 99.75% reported for Assay d361, while the other assays show a result under 0.7%.

If a report is made at this point, the data from Assay d361 will be included in the calculations and the quantification result will be largely overestimated.

Sample	Туре	Date	Target	Chr.	CNV	DNA (%)	Informative for
Post3	DNA	07 September 2023	d120	2q	1,0	0.48	12255874 12255874
Post3	DNA	07 September 2023	d252	8q	1,0	0.64	12255874 12255874
Post3	DNA	07 September 2023	d361	12q	1,0	99.75	12255874 12255874
					Mean:	33.62	

Cell fractions

In order to remove the data for Assay d361 from the Report, after approving the data, press the

'Select Assays' Select assays button.

The 'SelectAssaysWindow' will appear. In this window, users can choose to exclude an assay and its data from reporting.

FilterAssaysWindow	_	×
Select assays used for the report		
Unselect All		
 ✓ d120 ✓ REF 		
✓ d252 d361		
Save changes Cancel		

In this example, once Assay d361 is de-selected and the changes saved, select the 'Report' button, the data of excluded assay is no longer present in the report and the average percentage reflect only the included data.

Sample Type Date		Date	Target	Chr.	CNV	DNA	Informative for
						(%)	
Post3	DNA	07 September	d120	2q	1,0	0.48	12255874
		2023					12255874
Post3	DNA	07 September	d252	8q	1,0	0.64	12255874
		2023					12255874
	an 0.56						

Assigning Infromative Assays

TRACE Analysis[™] Software allows you to perform sample monitoring and leverage all the features of DigitalTRACE[™], without the need to genotype the sample in advance. If you know that an assay is informative for your sample, you can designate its informative status and then use it as you normally would.

In order to use this feature of DigitalTRACE[™] product:

Enter all the information necessary about the Recipient and the Donor samples. Enter information related to the Post Sample(s) being tested

In the Informative Markers section, click the "Add Marker" 🖸 button.

🙀 Marke	rs								_	
d10	2 🗶	00	d235		d356		d469		d574	
d11	3 🕺	00	d240	× O O	d359		d472	\times \circ \circ	d585	×OO
d12	0 🗙	00	d252	\times \circ \circ	d361	\times \circ \circ	d482	\times \circ \circ	d597	×OO
d13	7 🗙	00	d267	\times \circ \circ	d373	\times \circ \circ	d493	\times \circ \circ	d601	×OO
d14	8 🗙	00	d275	× O O	d386	\times \circ \circ	d504	\times \circ \circ	d615	×OO
d15	7 ×	00	d291	\times \circ \circ	d396	\times \circ \circ	d519	$\mathbf{X} \bigcirc \bigcirc$	d626	× O (
d17	6 🗙	00	d305	\times \circ \circ	d408	\times \circ \circ	d520	$\mathbf{X} \bigcirc \bigcirc$	d634	× O (
d18	3 🗙	00	d312	\times \bigcirc \bigcirc	d425	\mathbf{X} \bigcirc \bigcirc	d531	$\mathbf{X} \bigcirc \mathbf{O}$	d650	×OO
d19	8 🗶	00	d326	\times \bigcirc \bigcirc	d434		d548	$\mathbf{X} \bigcirc \bigcirc$	d663	× O (
d20	9 🗙	00	d333	$\mathbf{X} \bigcirc \bigcirc$	d441	\mathbf{X} \bigcirc \bigcirc	d555	$\mathbf{X} \bigcirc \bigcirc$	d670	× O (
d22	2 🕺	00	d345	\times \bigcirc \bigcirc	d450	\mathbf{X} \bigcirc \bigcirc	d567	$\mathbf{X} \bigcirc \bigcirc$	d678	×OO
<										>
	HLA Custo	m								
Cance	el									Ok

When this button is clicked, a window opens with all Assays available for assignment.

Assign the informative assays by clicking the circle and sample combination which is appropriate.

Press the 'x' to reset the choice for that assay.

Once the marker(s) have been assigned, click Ok.

Now the markers are selectable for the sample in the "Markers" window. TRACE Analysis™ Software will save this information, so it only must be entered once for a given sample.

A new window will ask to set the CNV of selected markers to proceed and the samples will be added to the plate.

斗 Set CNV	of ma	rkers			_		×
	1	2					
359	۲	0					
626	۲	0					
						Ok	:

Once all the information about the sample has been entered, click the "Quant" button

Software Overview

Use of TRACE Analysis[™] Software facilitates setting up dPCR based tests for QIAcuity and Biorad platform, analyzes data, calculates, and displays analyzed data and stores sample-specific information for easy retrieval or exporting to a laboratory information management system. All data files generated by the software are stored in .xml format, for ease of data transfer.

Preferences

The Preferences Menu of TRACE Analysis[™] Software allows for customization of many experimental parameters.

Through the preferences window, you can choose default settings for common variables, as well as enter information which may be unique to their testing regime or laboratory.

There are four main tabs within the window which enable changes to the experimental plate setup, manual entry of sample types, disease states and reference samples, experimental protocol variables and data storage customization. These customized parameters are found on the <u>Plate Setup</u>, <u>Custom Types</u>, <u>Concentrations</u> and <u>Data Locations</u> tabs.

There are also tabs enabling material tracking, user management and choice of language.

Plate Setup

4	Preferences X											
	Plate setup	Custom types	Concentrations	Data and Reports	Data locations	Material tracking	Users	Language				
	Machine	for genotypi	QIAcuity		v							
	Machine	for monitori	QIAcuity		v							
	Layout ty	/pe			Ŷ							
	Replicate	25	dPCR Sing	gletons ~								
	Color mo	de	Pastel	• Pla	ate for genoty	QIAcuity	, v1, 9	5 ~				
				Pla	ate for monito	96-low o	lensity	~				
						Ok	Can	cel	Apply			

Default machine:

Define the default dPCR analysis platform by clicking the radio button appropriate for the machine in use. TRACE Analysis[™] Software will generate the appropriate sample setup .txt or .csv file for the machine, as well as will be able to analyze the results exported from that machine.

Replicates:

Define whether to perform quantitative analysis using duplicates or singletons.

Color mode:

The color highlights which appear on the software interface and the protocols can be modified to use a scheme which is preferred by the user.

Plate Configuration:

This preference selects the plate in use for genotyping and monitoring.

Custom Types

In the Custom types tab of the Preferences Menu, users may define the sample types being used, the diseases associated with the samples as well as any external reference materials which may be used.

Preferences	;							×
Plate setup	Custom typ	Concentrations	Data and Reports	Data locations	Material tracking	Users	Language	
Cell Types	Diseases	External references						
Custom sa	ample type	s may be added or d	leleted using this n	nenu				
DNA		×	Ad	bt				
			Re	cot				
			IXE.	Set				
					Ok	Can	cel	Apply

Cell Types tab:

Define the origin of the materials being tested. You can type a sample material in the empty box near the Add button, then press Add, and the sample type will now appear as an option in TRACE Analysis[™]. The small "x" on the same line as the sample type is used to remove that type from the software.

Diseases tab: Define custom disease types

External references tab: Define external reference samples (for qPCR only)

Concentrations

4	Preference	s								×
] [Plate setup	Custom types	Concentrations	Data and Reports	Data locat	tions	Material tracking	Users	Language	
	Correctio	on for excess	master mix		15	%				
	Correction for excess DNA dilution			10	%					
	Sample Input for Genotyping					ng				
	Reference Sample Input for Monitoring (qPCR)				10	ng				
	Positive Control Input for Monitoring (Biorad)			10	ng					
	PostTx S	ample Input	for Monitoring	I	150	ng				
	Default o	concentration	of samples		100	ng/	ul			
	Reset									
							Ok	Can	cel	Apply

Define the variables used in protocol generation and experimental execution.

Define how much excess master mix and DNA dilution to use in the experimental protocol.

TRACE Analysis[™] calculates the volumes needed, based on the experimental setup, and then adds these additional factors to provide more than enough of each solution to execution the experiment.

Define the sample input for genotyping. Based on the data from verification studies, JETA Molecular recommends the use of 10 ng DNA input per well for genotyping.

Define the default concentrations of samples. This number will appear for all samples and can be altered if necessary.

Data and Reports

Preferences						\times
Plate setup Custom types Cond	centrations	Data and Reports	Data locations	Material tracking	Users Lan	iguage
qPCR dPCR			Laboratory	Information		
Report Highlighting	L	ow High	Department			
Total valid droplets/partitions	5	30000	Institution			
Post transplant RNaseP	1	5000	Address			
concentration [copies/µl]	1	5000	Postal code, (City		
NTC concentration [copies/µ]] 0	3	Telephone			
UPC concentration [copies/µ]	5	100	Comment			
			Anonymous	Reporting		
			Allow Anor	nymous Reporting		
			HPRIM Rep	orting		
			Allow HPRI	M Reporting		
				Ok	Cancel	Apply

In order to achieve more customized data analysis, TRACE Analysis[™] has a tab called Data and Reports in the Preferences section of the software.

In Report Highlighting, users could choose to have portions of their report highlighted, if values generated fall outside an expected range. The user can choose up to four different data quality inspections to be performed on monitoring data, with values outside of the input ranges highlighted automatically on the report. The report highlighting section enables us to define a range of values outside of which the data will be highlighted in the report.

Protocols and Reports can be customized by adding institutional information under the Laboratory Information section. Any information entered here will appear at the top of all protocols and reports generated by TRACE Analysis[™] software.

To create an anonymized report, go to the <u>Anonymized Reporting</u> Section.

Data Locations

4	Preference	S								×
r	Plate setup	Custom types	Concentrations	Data and Reports	Data locations	Material tracking	Users	Language		_
Choose the location where the software stores your data files										
	Data store location		l	C:\Users\info\Docu	iments\QTRACE	1			Default	
						Ok	Can	cel	Apply	

Define where TRACE Analysis[™] Software stores the data it generates. For laboratories using multiple copies of TRACE Analysis[™] Software, this location is likely best set as a shared location on a server. When all local copies of TRACE Analysis[™] Software point to the same data storage location, all copies can read and write to the same data files, eliminating the need to transfer files between computers.

Materials Tracking

late setup	Custom types	Concentrations	Data	a and Reports	Data locat	ions Ma	terial tracking	Users	Language	
qPCR Rea	gent tracking	dPCR Reagent trac	king:	Equipment &	t consumab	les trackin	g			
Name		Lot Num	ber	Expiry Date		Commer	nt			
d137				xx-xx-xxxx	15					^
d148				xx-xx-xxxx	15					
d157				xx-xx-xxxx	15					
d176				XX-XX-XXXX	15					
d183				XX-XX-XXXX	15					
d198				XX-XX-XXXX	15					
d209				XX-XX-XXXX	15					
d222				<u> </u>	15					~

This tab is where reagent lot numbers and expiration dates may be entered into TRACE Analysis[™] Software. This information will populate protocols and reports, eliminating the need for the operator to write the information each time.

Users

late setup	Custom types	Concentrations	Data and Reports	Data locations	Material tracking	Users	Language	
User Mar	agement							
Name				Role				
Change	e Password	Add User	Delete Use	er				
Change	Password	Add User	Delete Use	er				
Change	Password	Add User	Delete Use	er				

This tab is where User profiles are managed by an individual with 'Supervisor' rights in TRACE Analysis™ Software.

TRACE Analysis[™] Software restricts access to the software as well as functions within the software. When TRACE Analysis[™] launches for the first time, User Profiles need to be established. Once logged in with TRACE Analysis[™] credentials, a Supervisor account needs to be created. In the Users tab, there is an option for creating New Users.

By clicking 'Add User' a dialog box opens wherein the details of the new user can be added.

After the Supervisor has created an account, multiple additional "Supervisor," "Advanced User," and "Analyst" accounts can be made.

Analysts and Advanced Users are allowed to change their passwords, and to edit the Reagent tracking Preferences information. All other Preferences settings are controlled by the Supervisor. Advanced Users can inspect and can validate a result.

User	Edit all tabs in Preferences	Results Validation	Add or Delete Users/Passwords	Edit Reagent Tracking Data
Supervisor	Yes	Yes	Modify All Users and Passwords	Yes
Advanced User	No	Yes	Modify Personal Password	Yes
Analyst	No	No	Modify Personal Password	Yes

Language

4	Preference	5							×
	Plate setup	Custom types	Concentrations	Data and Reports	Data locations	Material tracking	Users	Language	
	Language				Englis	sh h			v
	Language c	hange will take o	effect after the ap	plication restart.		Ok	Can	icel	Apply

This tab enables to select a language for the TRACE Analysis[™] Software. Language change will take effect after the application restart.

lcon	Name	Meaning
	Home	Return to the home screen of TRACE Analysis™ Software
New	New	Add a new recipient record to the database. A record will always require a recipient name, unique recipient identifier and a sample identifier.
Screen	Genotype	After entering recipient and donor specific information, choosing Screen will start creating a genotyping experiment by placing your samples on the plate.
Quant	Quantify	After selecting a recipient to monitor and entering sample specific information, the Quant button adds your sample to a monitoring experiment.
Û	Export	Export an experiment sample setup file for use with a PCR instrument.
	Import	Import the .txt or .csv results file from your PCR instrument to review the data collected.
1111	Overview	Shows all available data for a transplantation: informative markers and quantitative analyses.

Software Buttons

Q	Browse Experiment	Browse all experiments previously created in TRACE Analysis [™] Software. By pressing the open button, you can re-open the imported data files.
	Save	Update information about the recipients or donors. Do not update information about the recipient or donor if there is PCR data waiting to be analyzed for them.
	Print	Print all typing and monitoring results from the currently selected recipient data.
×	Preferences	Set your preferred instrument, sample types, number of replicates and disease types.
?	Help	Review this manual directly via TRACE Analysis™ Software to search for useful tips, tricks, and troubleshooting.
Ø	About	Technical information about TRACE Analysis [™] Software, such as version, license, contact information.
×	Remove	Remove a sample from comparative genotyping.
\bigcirc	Reset	Reset the experiment plate completely.
~	Undo	Reset the last placement onto the experimental plate.
~	Redo	Reset the previous "Undo" action onto the experimental plate.

Anonymized Reporting

The ability to generate anonymized reports from TRACE Analysis[™] Software is an option in the Preferences.

On the 'Data and Reports' tab of the Preferences, there is a check box which allows for reports to be generated without the names of the recipient and donor(s) appearing on them.

qPCR dPCR Laboratory Information	
Replicate Highlighting Method Department	
Method Value Institution	
○ % CV 2 Address	
SD I Postal code, City	
Cq Range 0.5 Telephone	
Report Highlighting	
Method Low High Anonymous Reporting	
Replicate Highlighting	
Reference Sample Cq Range 24 28	
Reference Sample ΔCq -1.5 1.5 Allow HPRIM Reporting	

With the 'Allow Anonymous Reporting' option checked, Reports generated from TRACE Analysis[™] Software will have the Recipient ID or the Donor ID replacing the name of the individuals.

Chimerism Monitoring - Full Report

Experiment name:	Test 001
Experiment date:	30 August 2023
Data folder:	C:\Users\cemma\OneDrive\Documents\Data Folders\R1 R1_R1
Operator name:	JETA

Recipient 1	Donor 1		
Name:	[ID:236985] [ID:236985] Name:		[ID:774698] [ID:774698]
ID:	236985	ID:	774698
Gender:	Unknown	Gender:	Unknown

Glossary and Definitions

Term	Definition		
Bi-allelic	An allele which exists in two variant forms - a major and minor allele. Individuals may be homozygous for either variant or heterozygous		
Experiment	A collection of genotyping and monitoring reactions that are carried out simultaneously (i.e., on a single plate)		
INDEL	Abbreviation for insertion/deletion polymorphism; a class of DNA mutation characterized by the loss or gain of genetic material at a specific locus		
Informative assay	An assay capable of distinguishing between genetic material from two or more sources; An informative assay is an assay for a marker allele that is present (positive) in one individual genome and absent (negative) in the other genome(s)		
Monitoring assay	An assay designed for use in quantification of a specific marker, allele, or analyte. The assay must demonstrate high specificity for accurate quantification and high sensitivity to achieve a desirable limit of detection		
Sample	A sample is a unique donor or recipient		
Passive reference	A dye that produces fluorescence signal. The fluorescence signal in the reference channel is measured to determine the number of valid partitions in a well. Differences in the signal intensities between partitions are normalized and the fluorescence signals in the target channels are corrected accordingly.		
Threshold	The intensity of fluorescence that must be exceeded for each reaction to be seen as positive		
Partition	A compartment where the PCR reaction takes place		
Nanoplate	QIAcuity dPCR plate with several single partitions		
CNV	Copy Number Variation (CNV) refers to a type of genetic variation in which the number of copies of a particular segment of DNA differs between individuals		

	Universal Plasmid Control (UPC). A synthetic
	control sample possessing the targets for
OFC	Assays in the DigitalTRACE™panel (typically
	100% target DNA)