# QTRACE and DigitalTRACE Analysis System Operator's Manual

Copyright © 2024 by JETA Molecular BV. All Rights Reserved.

## **Table of contents**

| Welcome                                     |     |
|---------------------------------------------|-----|
| Product Use Limitations                     | . 3 |
| Limited License Agreement                   | . 4 |
| Disclaimer                                  |     |
| Copyright and Trademarks                    |     |
| Introduction                                |     |
| QTRACE and DigitalTRACE System Workflow     | . 9 |
| Materials                                   |     |
| Key to Symbols                              | 11  |
| Materials Provided                          | 12  |
| Materials Sold Separately                   | 16  |
| DNA Sample Requirements                     |     |
| Warnings                                    |     |
| Shipping Conditions                         | 20  |
| Storage and Handling Requirements           |     |
| Technical Support                           |     |
| Genotyping Test                             |     |
| Protocol                                    | 25  |
| Genotyping Data Analysis and Report         | 37  |
| Multiple Donor Analysis Using QTRACE Plates |     |
| Custom Genotyping Panels                    |     |
| Virtual Typing                              | 50  |
| Monitoring Test                             |     |
| Assigning Informative Markers               |     |
| Protocol                                    |     |
| Monitoring Data Analysis and Report         | 61  |
| Assay Filtering from Monitoring Reports     |     |
| External Reference Functions                |     |
| Simultaneous Genotyping and Monitoring      | 68  |
| Software Overview                           |     |
| Preferences                                 | 70  |
| Software Access And User Profile Management | 78  |
| File Management                             | 80  |
| Data Exports - csv and xlsx                 | 82  |
| HPRIM Data Export                           |     |
| Software Buttons                            |     |
| Drag and Drop Plate Layouts                 |     |
| Anonymized Reporting                        | 91  |
| Modification of Existing Data               |     |
| Data Analysis Algorithms                    |     |
| Bibliography                                |     |
| Glossary                                    |     |
| End User Software License Agreement         | 103 |

#### Welcome

Welcome to the QTRACE<sup>®</sup> and DigitalTRACE<sup>™</sup> Analysis System Operator's Manual and Help System. This file serves as both the QTRACE<sup>®</sup> System Operator's Manual (PN 3 31047, JETA Molecular), the DigitalTRACE<sup>™</sup> Operator's Manual (PN 331307) and the help system found within the TRACE Analysis<sup>™</sup> Software package.

Navigate to your subject of interest and find the solution to your question. If your topic of interest is not listed or you would like to receive additional information, do not hesitate to contact us. The content of this help system is regularly updated. We encourage you to inform us on inaccuracies or suggestions. We do our utmost to implement your suggestions swiftly, such that you and other QTRACE<sup>®</sup> and DigitalTRACE<sup>™</sup> System users may benefit from it.



## **Product Use Limitations**

This version of the TRACE Analysis<sup>™</sup> Software is for Research Use Only. It is not intended for use in diagnostic procedures.

No claim or representation is intended to provide information for the diagnosis, prevention, or treatment of a disease.

#### **Limited License Agreement**

Use of this product signifies the agreement of any purchaser or user of the QTRACE<sup>®</sup> and DigitalTRACE<sup>™</sup> Analysis System kits or components with the following terms:

The QTRACE<sup>®</sup> and DigitalTRACE<sup>™</sup> Kits may be used solely in accordance with the QTRACE<sup>®</sup> and DigitalTRACE<sup>™</sup> Analysis System Operator's Manual and for use with components contained in the kits only. JETA Molecular grants no license under any of its intellectual property to use or incorporate the enclosed components of these kits with any components not included within these kits except as described in the QTRACE<sup>®</sup> and DigitalTRACE<sup>™</sup> Analysis System Operator's Manual and additional protocols available at www.jetamolecular.com.

Other than expressly stated licenses, JETA Molecular makes no warranty that these kits and/or their use(s) do not infringe the rights of third-parties.

The QTRACE<sup>®</sup> and DigitalTRACE<sup>™</sup> Kits and their components are licensed for one-time use and may not be re-used, re-furbished, re-sold or reverse engineered.

JETA Molecular specifically disclaims any other licenses, expressed or implied other than those expressly stated.

The purchaser and user of the QTRACE<sup>®</sup> and DigitalTRACE<sup>™</sup> Kits agree not to take or permit anyone else to take any steps that could lead to or facilitate any acts prohibited above. JETA Molecular may enforce the prohibitions of this Limited License Agreement in any Court, and shall recover all its investigative and Court costs, including attorney fees, in any action to enforce this Limited License Agreement or any of its intellectual property rights relating to the kit and/or its components.

#### Disclaimer

JETA Molecular makes every effort to ensure that this manual is accurate. JETA Molecular disclaims liability for any inaccuracies or omissions that may have occurred. Information in this manual is subject to change without notice.

JETA Molecular assumes no responsibility for any inaccuracies that may be contained in this manual.

JETA Molecular reserves the right to make improvements to this manual and/or to the products described in this manual, at any time without notice.

If you find information in this manual that is incorrect, misleading, or incomplete, we would appreciate your comments and suggestions. Please send them to info@jetabv.com.

## **Copyright and Trademarks**

This publication, including all photographs, illustrations, is protected under international copyright laws, with all rights reserved. Neither this manual, nor any of the material contained herein, may be reproduced without written consent of JETA Molecular.

JETA Molecular and its logo design are registered trademarks of JETA Molecular BV in the U.S. and/or certain other countries.

QTRACE<sup>®</sup> and DigitalTRACE<sup>™</sup> are registered trademarks of ElsworthMolecular Holding BV in the U.S. and/or certain other countries. QTRACE<sup>®</sup> Products and Software are licensed exclusively to JETA Molecular BV from ElsworthMolecular Holding BV.

MicroAmp<sup>®</sup> is a registered trademark of Thermo Fisher.

Moq Copyright © 2007. Clarius Consulting, Manas Technology Solutions, InSTEDD http://www.moqthis.com/ All rights reserved.

NUnit

Portions Copyright © 2002-2013 Charlie Poole or Copyright © 2002-2004 James W. Newkirk, Michael C. Two, Alexei A. Vorontsov or Copyright © 2000-2002 Philip A. Craig

PDFsharp Copyright © 2005-2007 empira Software GmbH, Cologne (Germany)

SharpZipLib

WPF Toolkit

All other trademarks, copyrights, patents, service marks, logos and trade names are the sole property of their respective owners.

## Introduction

#### Background Information

The QTRACE<sup>®</sup>, DigitalTRACE<sup>™</sup> and MultiTRACE<sup>™</sup> Genotyping Plates, QTRACE<sup>®</sup> and DigitalTRACE<sup>™</sup> Monitoring Assays and the TRACE Analysis<sup>™</sup> Software meet the needs of any research application that requires highly sensitive detection and quantification of the genome of one individual in the background of another individual or individuals. A genetic chimera is an organism with two or more genetically distinct cell populations, *i.e.*, cell populations with different genomes.

Chimerism can arise in humans through a variety of means, such as inheritance, maternal-fetal stem cell trafficking during gestation, blood vessel sharing in fraternal twin gestation, blood transfusions, bone marrow transplantation, cord blood transplantation, and solid organ transplantation. The presence of two distinct human genomes in a sample can also occur simply through the mixing of human cells from more than one individual, for example, when two cell lines are cross-contaminated, or in forensic tissue samples.

#### **Product Overview**

The QTRACE<sup>®</sup> and the DigitalTRACE<sup>™</sup> Analysis System consist of DNA genotyping plates, individual quantification assays, one reference assay, and the TRACE Analysis<sup>™</sup> Software.

The QTRACE<sup>®</sup> INDEL Assays are a set of 80 genetic markers that are able to differentiate, and then quantify, the contributors to a human-mixed DNA sample using quantitative polymerase chain reaction (qPCR). Each of the 80 assays is designed to a distinct bi-allelic insertion/deletion (INDEL) or copy number polymorphisms in the human genome. The QTRACE<sup>®</sup> INDEL assays are based upon self-quenched, hydrolysis probe chemistry. In a qPCR, a dye labeled oligonucleotide probe enables the detection of a specific PCR product as it accumulates during PCR cycling. qPCR has been shown in various studies to quantify target DNA samples over an 11-log dynamic range in optimized conditions (100 billion-fold differences in starting copy number; Nolan, *et al*, 2006). Comparison of cycle thresholds (CTs) from different samples can be used to determine the relative amounts of DNA in two different samples (Livak and Schmittgen, 2001). The high sensitivity is the result of the very large dynamic range of the real-time amplification method and is limited essentially by the input copy number of total genomic DNA that can be added to the PCR reaction. The RNase P assay serves as reference assay for the quantification.

The DigitalTRACE<sup>™</sup> INDEL assays are a set of 70 digital polymerase chain reaction (dPCR) assays based upon self-quenched, hydrolysis probe chemistry. Each of the assays is designed to a distinct bi-allelic insertion/deletion (INDEL) or copy number polymorphisms in the human genome. In a dPCR reaction, a dye-labeled oligonucleotide probe enables the detection of a specific PCR product at the end PCR cycling. The high sensitivity is the result of the very large dynamic range of the real-time amplification method and is limited essentially by the input copy number of total DNA that can be added to the dPCR reaction. In the Monitoring test, the assays are formulated with the target in channel FAM and the reference assay (RNase P) in channel HEX.

The QTRACE<sup>®</sup> and DigitalTRACE<sup>™</sup> HLA Assays are qPCR or dPCR assays based upon selfquenched, hydrolysis probe chemistry. These assays are designed to detect the loss of HLA heterozygosity after haploidentical HSCT. The TRACE Analysis<sup>™</sup> Software was designed specifically for the QTRACE<sup>®</sup> and DigitalTRACE<sup>™</sup> INDEL Assay Set. The software provides a streamlined workflow for both the genotyping and quantification tests. The software guides the user through assay setup, performs data analysis, generates results reports and stores the data collected for samples over time.

The procedure for determining the level of a genome of interest in a sample consists of two parts: a genotyping test and a quantification test.

#### **Genotyping Test**

In the initial genotyping test, the DNAs that comprise a mixed DNA sample are analyzed using a QTRACE<sup>®</sup>, DigitalTRACE<sup>™</sup> or MultiTRACE<sup>™</sup> Genotyping Plate, to identify all of the informative assays for the samples. An informative assay is an assay for a marker allele that is present (positive) in one individual genome *and* absent (negative) in the other genome.

The QTRACE<sup>®</sup> Genotyping plate contains a duplicate set of assays: the 46 quantification assays and the reference (RNaseP) assay that serves as both a positive control and a No Template Control (NTC).

The QTRACE<sup>®</sup> Extended Panel Genotyping Plate, containing additional 34 markers, is available for rare cases where more markers may be needed, including patients receiving a second transplant or highly similar siblings.

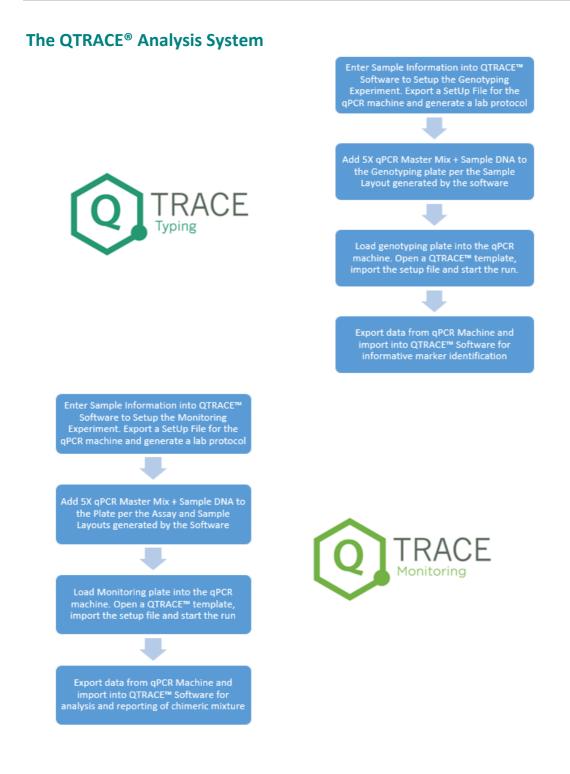
The DigitalTRACE<sup>™</sup> Genotyping Plate contains a set of 43 quantification assays and the reference (RNase P) assay that serves as both a positive control and a No Template Control (NTC).

The DigitalTRACE<sup>™</sup> EP QIAcuity Genotyping Plate represents an extended panel of dPCR markers that can be used for dPCR monitoring in the case of need for additional markers allowing to distinguish between donor and recipient DNA. This plate contains a set of 27 quantification assays and the reference (RNase P) assay that serves as both a positive control and a No Template Control (NTC).

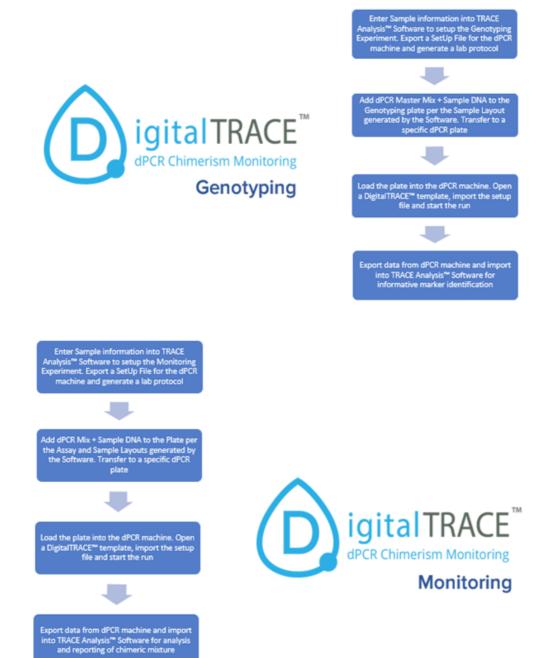
The MultiTRACE<sup>™</sup> Genotyping Plate contains a set of 45 quantification assays and the reference (RNase P) assay that serves as both a positive control and a No Template Control (NTC).

#### **Monitoring Test**

In the monitoring (quantification) test, two or more of the informative assays identified in the genotyping test is used to quantify the DNA of interest in an unknown sample relative to a reference sample (calibrator). Any of the informative assays identified in the genotyping test can be used to perform a quantification test. The amount of the genome positive for the informative allele in the unknown sample is determined relative to the amount of that same genome in the reference sample, and the result is expressed as a percentage (ratio). For example, a result of 5% indicates that there is 5% of genome A in the unknown sample relative to the reference sample. The simplest case assumes that the reference sample has 100% of genome A.


The informativeness of a multi-locus genotyping panel is a measure of the probability of finding at least one informative assay between two individual genomes (or DNA samples). Informativeness is calculated from the population frequency estimates of the alleles used to

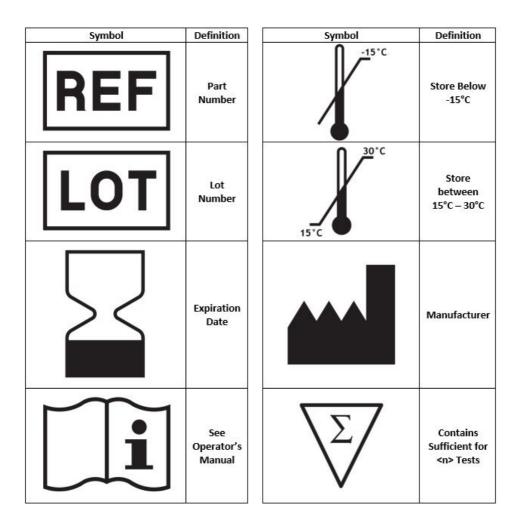
make up a multi-locus genotyping panel, and thus differs between ethnic populations. In addition, the informativeness of any panel of polymorphic loci is higher in unrelated individuals than in related individuals.


*Note*: Estimates are based upon both public and proprietary allele frequency data for the 80 assay panel.

The performance of the QTRACE<sup>®</sup> and DigitalTRACE<sup>™</sup> Analysis System has been verified to a level of 0.1% minor component DNA in 150ngs total DNA.

## **QTRACE and DigitalTRACE System Workflow**




#### The DigitalTRACE<sup>™</sup> Analysis System



## **Materials**

## **Key to Symbols**

The following symbols appear within the labeling of the QTRACE<sup>®</sup> and DigitalTRACE<sup>™</sup> System Products:



## **Materials Provided**

| REF    | Name                                                               | Description                                                                                                                         | Storage<br>Conditions | Unit |
|--------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------|
| 121045 | QTRACE <sup>®</sup> Genotyping Plates,<br>4-Pack                   | Four ABI MicroAmp® Optical<br>96-well plates pre-arrayed<br>with INDEL qPCR Assays;<br>individually sealed                          | 30°C                  | Вох  |
| 121056 | QTRACE <sup>®</sup> Genotyping Plates -<br>FAST                    | Four ABI FAST MicroAmp <sup>®</sup><br>Optical 96-well plates pre-<br>arrayed with INDEL qPCR<br>Assays; individually sealed        | 30°C                  | Вох  |
| 121066 | QTRACE <sup>®</sup> Genotyping Plates –<br>Roche 480               | Four Roche 480 Optical 96-well<br>plates pre-arrayed with INDEL<br>qPCR Assays; individually<br>sealed                              | 30°C                  | Вох  |
| 121129 | MultiTRACE™ Genotyping Plate<br>Pack – ABI 0.2mL v2                | Four ABI MicroAmp <sup>®</sup> Optical<br>96-well plates pre-arrayed<br>with INDEL qPCR Assays in<br>multiplex; individually sealed | 30°C                  | Вох  |
| 121220 | MultiTRACE™ Genotyping Plate<br>Pack - ABI 0.1mL v2                | Four ABI MicroAmp <sup>®</sup> Optical<br>96-well plates pre-arrayed<br>with INDEL qPCR Assays in<br>multiplex; individually sealed | 30°C                  | Вох  |
| 121221 | MultiTRACE™ Genotyping Plate<br>Pack - LC480 v2                    | Four Roche 480 Optical 96-well<br>plates pre-arrayed with INDEL<br>qPCR Assays in multiplex;<br>individually sealed                 | 30°C                  | Вох  |
| 121226 | MultiTRACE™ Genotyping Plate<br>Pack – ABI 0.2mL v3                | Four ABI MicroAmp <sup>®</sup> Optical<br>96-well plates pre-arrayed<br>with INDEL qPCR Assays in<br>multiplex; individually sealed | 30°C                  | Вох  |
| 121285 | MultiTRACE™ Genotyping Plate<br>Pack – ABI 0.1mL v3                | Four ABI MicroAmp <sup>°</sup> Optical<br>96-well plates pre-arrayed<br>with INDEL qPCR Assays in<br>multiplex; individually sealed | 30°C                  | Вох  |
| 121228 | MultiTRACE™ Genotyping Plate<br>Pack – LC480 v3                    | Four Roche 480 Optical 96-well<br>plates pre-arrayed with INDEL<br>qPCR Assays in multiplex;<br>individually sealed                 | 30°C                  | Вох  |
| 121139 | QTRACE <sup>®</sup> Extended Panel<br>Genotyping Plate - ABI 0.2mL | Four ABI MicroAmp <sup>®</sup> Optical<br>96-well plates pre-arrayed<br>with INDEL qPCR Assays;<br>individually sealed              | 30°C                  | Вох  |
| 121045 | DigitalTRACE™ QIAcuity<br>Genotyping Plate                         | Two ABI MicroAmp <sup>®</sup> Optical 96-<br>well plates pre-arrayed with<br>INDEL dPCR Assays; individually<br>sealed              | 30°C                  | Вох  |

| 121056 | DigitalTRACE™ EP QIAcuity<br>Genotyping Plate | Two ABI MicroAmp <sup>®</sup> Optical 96-<br>well plates pre-arrayed with<br>INDEL dPCR Assays; individually<br>sealed | 30°C | Вох |  |
|--------|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------|-----|--|
|--------|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------|-----|--|

| REF    | Name                                              | Description                                                                                                                                        | Storage<br>Conditions | Unit |
|--------|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------|
| 311044 | QTRACE <sup>®</sup> qPCR Master Mix               | 1.6ml Buffered solution of<br>dNTPs, a DNA Polymerase, a<br>passive reference dye and<br>MgCl <sub>2</sub>                                         | -200                  | Tube |
| 311043 | QTRACE <sup>®</sup> RNaseP Assay                  | 1.1ml buffered solution<br>containing a mix of primers<br>and probe for detecting the<br>RNaseP gene                                               | -200                  | Tube |
|        | QTRACE <sup>®</sup> INDEL Assays                  | 375µl buffered solution<br>containing a mix of primers<br>and probe for detecting the<br>variant of interest                                       | -200                  | Tube |
|        | DigitalTRACE™ INDEL Assays                        | 26μl buffered solution<br>containing a mix of primers<br>and probe for detecting the<br>variant of interest in FAM and<br>a reference assay in HEX | -200                  | Tube |
|        | QTRACE <sup>®</sup> HLA Assays                    | 100µl buffered solution<br>containing a mix of primers<br>and probe for detecting the<br>variant of interest                                       | -200                  | Tube |
|        | DigitalTRACE™ HLA Assays                          | 26μl buffered solution<br>containing a mix of primers<br>and probe for detecting the<br>variant of interest in FAM and<br>a reference assay in HEX | -200                  | Tube |
| 711295 | QTRACE <sup>®</sup> Universal Positive<br>Control | 360µl buffered solution<br>containing synthetic DNA<br>serving as positive control                                                                 | -200                  | Tube |
| 711294 | DigitalTRACE™ Universal Positive<br>Control       | 360µl buffered solution<br>containing synthetic DNA<br>serving as positive control                                                                 | -200                  | Tube |

## QTRACE<sup>®</sup> Reference Numbers:

| REF    | Name                                | REF    | Name                                |
|--------|-------------------------------------|--------|-------------------------------------|
| 211140 | QTRACE <sup>®</sup> INDEL Assay 102 | 211030 | QTRACE <sup>®</sup> INDEL Assay 748 |
| 211141 | QTRACE <sup>®</sup> INDEL Assay 113 | 211053 | QTRACE <sup>®</sup> INDEL Assay 755 |
| 211142 | QTRACE <sup>®</sup> INDEL Assay 120 | 211031 | QTRACE <sup>®</sup> INDEL Assay 768 |
| 211310 | QTRACE <sup>®</sup> INDEL Assay 126 | 211167 | QTRACE <sup>®</sup> INDEL Assay 777 |
| 211001 | QTRACE <sup>®</sup> INDEL Assay 137 | 211032 | QTRACE <sup>®</sup> INDEL Assay 784 |
| 211002 | QTRACE <sup>®</sup> INDEL Assay 148 | 211168 | QTRACE <sup>®</sup> INDEL Assay 795 |

| 211143 | QTRACE <sup>®</sup> INDEL Assay 157 | 211033 | QTRACE <sup>®</sup> INDEL Assay 803              |
|--------|-------------------------------------|--------|--------------------------------------------------|
| 211311 | QTRACE <sup>®</sup> INDEL Assay 161 | 211052 | QTRACE <sup>®</sup> INDEL Assay 819              |
| 211144 | QTRACE <sup>®</sup> INDEL Assay 176 | 211034 | QTRACE <sup>®</sup> INDEL Assay 824              |
| 211145 | QTRACE <sup>®</sup> INDEL Assay 183 | 211035 | QTRACE <sup>®</sup> INDEL Assay 832              |
| 211146 | QTRACE <sup>®</sup> INDEL Assay 198 | 211036 | QTRACE <sup>®</sup> INDEL Assay 840              |
| 211003 | QTRACE <sup>®</sup> INDEL Assay 209 | 211037 | QTRACE <sup>®</sup> INDEL Assay 854              |
| 211312 | QTRACE <sup>®</sup> INDEL Assay 216 | 211317 | QTRACE <sup>®</sup> INDEL Assay 861              |
| 211147 | QTRACE <sup>®</sup> INDEL Assay 222 | 211169 | QTRACE <sup>®</sup> INDEL Assay 874              |
| 211147 | QTRACE® INDEL Assay 222             | 211105 | QTRACE® INDEL Assay 884                          |
| 211004 | QTRACE® INDEL Assay 240             | 211038 | QTRACE® INDEL Assay 888                          |
| 211148 | QTRACE <sup>®</sup> INDEL Assay 252 | 211171 | QTRACE <sup>®</sup> INDEL Assay 892              |
| 211006 | QTRACE® INDEL Assay 267             | 211039 | QTRACE® INDEL Assay 907                          |
| 211149 | QTRACE <sup>®</sup> INDEL Assay 275 | 211035 | QTRACE® INDEL Assay 916                          |
| -      |                                     | 211040 | QTRACE® INDEL Assay 910                          |
| 211313 | QTRACE <sup>®</sup> INDEL Assay 284 |        |                                                  |
| 211007 | QTRACE <sup>®</sup> INDEL Assay 291 | 211173 | QTRACE <sup>®</sup> INDEL Assay 936              |
| 211008 | QTRACE <sup>®</sup> INDEL Assay 305 | 211041 | QTRACE <sup>®</sup> INDEL Assay 948              |
| 211009 | QTRACE <sup>®</sup> INDEL Assay 312 | 211042 | QTRACE® INDEL Assay 954                          |
| 211010 | QTRACE <sup>®</sup> INDEL Assay 326 | 211174 | QTRACE <sup>®</sup> INDEL Assay 962              |
| 211150 | QTRACE <sup>®</sup> INDEL Assay 333 | 211175 | QTRACE <sup>®</sup> INDEL Assay 971              |
| 211011 | QTRACE <sup>®</sup> INDEL Assay 345 | 211176 | QTRACE <sup>®</sup> INDEL Assay 987              |
| 211012 | QTRACE <sup>®</sup> INDEL Assay 356 | 211177 | QTRACE <sup>®</sup> INDEL Assay 990              |
| 211013 | QTRACE <sup>®</sup> INDEL Assay 359 | 211078 | QTRACE <sup>®</sup> HLA Assay H005               |
| 211014 | QTRACE <sup>®</sup> INDEL Assay 361 | 211080 | QTRACE <sup>®</sup> HLA Assay H007               |
| 211055 | QTRACE <sup>®</sup> INDEL Assay 373 | 211081 | QTRACE <sup>®</sup> HLA Assay H009               |
| 211064 | QTRACE <sup>®</sup> INDEL Assay 386 | 211083 | QTRACE <sup>®</sup> HLA Assay H017               |
| 211151 | QTRACE <sup>®</sup> INDEL Assay 396 | 211130 | QTRACE <sup>®</sup> HLA Assay H020               |
| 211015 | QTRACE <sup>®</sup> INDEL Assay 408 | 211085 | QTRACE <sup>®</sup> HLA Assay H022               |
| 211314 | QTRACE <sup>®</sup> INDEL Assay 411 | 211087 | QTRACE <sup>®</sup> HLA Assay H025               |
| 211016 | QTRACE <sup>®</sup> INDEL Assay 425 | 211088 | QTRACE <sup>®</sup> HLA Assay H028               |
| 211017 | QTRACE <sup>®</sup> INDEL Assay 434 | 211131 | QTRACE <sup>®</sup> HLA Assay H029               |
| 211152 | QTRACE <sup>®</sup> INDEL Assay 441 | 211091 | QTRACE <sup>®</sup> HLA Assay H036               |
| 211153 | QTRACE <sup>®</sup> INDEL Assay 450 | 211092 | QTRACE <sup>®</sup> HLA Assay H038               |
| 211315 | QTRACE <sup>®</sup> INDEL Assay 457 | 211093 | QTRACE <sup>®</sup> HLA Assay H039               |
| 211018 | QTRACE <sup>®</sup> INDEL Assay 469 | 211094 | QTRACE <sup>®</sup> HLA Assay H041               |
| 211154 | QTRACE <sup>®</sup> INDEL Assay 472 | 211095 | QTRACE <sup>®</sup> HLA Assay H043               |
| 211155 | QTRACE <sup>°</sup> INDEL Assay 482 | 211096 | QTRACE <sup>®</sup> HLA Assay H045               |
| 211156 | QTRACE <sup>®</sup> INDEL Assay 493 | 211098 | QTRACE® HLA Assay H045                           |
| 211130 | QTRACE® INDEL Assay 504             | 211098 | QTRACE® HLA Assay H051<br>QTRACE® HLA Assay H052 |
| 211015 | QTRACE® INDEL Assay 504             | 211099 | QTRACE® HLA Assay H052                           |
| 211020 | QTRACE <sup>®</sup> INDEL Assay 520 | 211100 | QTRACE® HLA Assay H055                           |
| 211021 | QTRACE <sup>®</sup> INDEL Assay 531 | 211132 | QTRACE® HLA Assay H101                           |
| 211022 | QTRACE <sup>®</sup> INDEL Assay 548 | 211132 | QTRACE® HLA Assay H101                           |
| 211157 | QTRACE <sup>®</sup> INDEL Assay 555 | 211134 | QTRACE® HLA Assay H103                           |
| 211158 | QTRACE <sup>®</sup> INDEL Assay 567 |        |                                                  |
|        |                                     | 211279 | QTRACE® HLA Assay H104                           |
| 211159 | QTRACE® INDEL Assay 574             | 211280 | QTRACE <sup>®</sup> HLA Assay H105               |
| 211160 | QTRACE <sup>®</sup> INDEL Assay 585 | 211281 | QTRACE <sup>®</sup> HLA Assay H106               |
| 211161 | QTRACE <sup>®</sup> INDEL Assay 597 | 211282 | QTRACE <sup>®</sup> HLA Assay H107               |
| 211023 | QTRACE <sup>®</sup> INDEL Assay 601 | 211283 | QTRACE <sup>®</sup> HLA Assay H108               |
| 211024 | QTRACE <sup>®</sup> INDEL Assay 615 | 211284 | QTRACE <sup>®</sup> HLA Assay H109               |
| 211025 | QTRACE <sup>®</sup> INDEL Assay 626 | 211290 | QTRACE <sup>®</sup> HLA Assay H110               |
| 211026 | QTRACE <sup>®</sup> INDEL Assay 634 | 211291 | QTRACE <sup>®</sup> HLA Assay H111               |

QTRACE and DigitalTRACE Analysis System Operator's Manual

| 211316 | QTRACE <sup>®</sup> INDEL Assay 647 | 211292 | QTRACE <sup>®</sup> HLA Assay H112 |
|--------|-------------------------------------|--------|------------------------------------|
| 211027 | QTRACE <sup>®</sup> INDEL Assay 650 | 211293 | QTRACE <sup>®</sup> HLA Assay H113 |
| 211162 | QTRACE <sup>®</sup> INDEL Assay 663 | 211296 | QTRACE <sup>®</sup> HLA Assay H114 |
| 211164 | QTRACE <sup>®</sup> INDEL Assay 678 | 211297 | QTRACE <sup>®</sup> HLA Assay H115 |
| 211165 | QTRACE <sup>®</sup> INDEL Assay 681 | 211298 | QTRACE <sup>®</sup> HLA Assay H116 |
| 211166 | QTRACE <sup>®</sup> INDEL Assay 694 | 211299 | QTRACE <sup>®</sup> HLA Assay H117 |
| 211028 | QTRACE <sup>®</sup> INDEL Assay 706 | 211300 | QTRACE <sup>®</sup> HLA Assay H118 |
| 211065 | QTRACE <sup>®</sup> INDEL Assay 710 | 211301 | QTRACE <sup>®</sup> HLA Assay H119 |
| 211051 | QTRACE <sup>®</sup> INDEL Assay 721 | 211319 | QTRACE <sup>®</sup> HLA Assay H120 |
| 211029 | QTRACE <sup>®</sup> INDEL Assay 736 |        |                                    |

## DigitalTRACE<sup>™</sup> Reference Numbers:

| REF    | Name                                      | REF    | Name                                     |
|--------|-------------------------------------------|--------|------------------------------------------|
| 811140 | DigitalTRACE™ INDEL Assay 102             | 811051 | DigitalTRACE™ INDEL Assay 721            |
| 811141 | DigitalTRACE™ INDEL Assay 113             | 811029 | DigitalTRACE™ INDEL Assay 736            |
| 811142 | DigitalTRACE <sup>™</sup> INDEL Assay 120 | 811030 | DigitalTRACE™ INDEL Assay 748            |
| 811310 | DigitalTRACE™ INDEL Assay 126             | 811053 | DigitalTRACE™ INDEL Assay 755            |
| 811001 | DigitalTRACE™ INDEL Assay 137             | 811031 | DigitalTRACE™ INDEL Assay 768            |
| 811002 | DigitalTRACE™ INDEL Assay 148             | 811167 | DigitalTRACE™ INDEL Assay 777            |
| 811143 | DigitalTRACE™ INDEL Assay 157             | 811032 | DigitalTRACE™ INDEL Assay 784            |
| 811311 | DigitalTRACE™ INDEL Assay 161             | 811168 | DigitalTRACE™ INDEL Assay 795            |
| 811144 | DigitalTRACE™ INDEL Assay 176             | 811033 | DigitalTRACE™ INDEL Assay 803            |
| 811145 | DigitalTRACE™ INDEL Assay 183             | 811052 | DigitalTRACE™ INDEL Assay 819            |
| 811146 | DigitalTRACE™ INDEL Assay 198             | 811034 | DigitalTRACE™ INDEL Assay 824            |
| 811003 | DigitalTRACE™ INDEL Assay 209             | 811035 | DigitalTRACE™ INDEL Assay 832            |
| 811312 | DigitalTRACE™ INDEL Assay 216             | 811036 | DigitalTRACE™ INDEL Assay 840            |
| 811147 | DigitalTRACE™ INDEL Assay 222             | 811037 | DigitalTRACE™ INDEL Assay 854            |
| 811004 | DigitalTRACE™ INDEL Assay 235             | 811317 | DigitalTRACE™ INDEL Assay 861            |
| 811005 | DigitalTRACE™ INDEL Assay 240             | 811169 | DigitalTRACE™ INDEL Assay 874            |
| 811148 | DigitalTRACE™ INDEL Assay 252             | 811170 | DigitalTRACE™ INDEL Assay 884            |
| 811006 | DigitalTRACE™ INDEL Assay 267             | 811038 | DigitalTRACE™ INDEL Assay 888            |
| 811149 | DigitalTRACE™ INDEL Assay 275             | 811171 | DigitalTRACE™ INDEL Assay 892            |
| 811313 | DigitalTRACE™ INDEL Assay 284             | 811039 | DigitalTRACE™ INDEL Assay 907            |
| 811007 | DigitalTRACE™ INDEL Assay 291             | 811040 | DigitalTRACE™ INDEL Assay 916            |
| 811008 | DigitalTRACE™ INDEL Assay 305             | 811172 | DigitalTRACE™ INDEL Assay 923            |
| 811009 | DigitalTRACE™ INDEL Assay 312             | 811173 | DigitalTRACE™ INDEL Assay 936            |
| 811010 | DigitalTRACE™ INDEL Assay 326             | 811041 | DigitalTRACE™ INDEL Assay 948            |
| 811150 | DigitalTRACE™ INDEL Assay 333             | 811042 | DigitalTRACE™ INDEL Assay 954            |
| 811011 | DigitalTRACE™ INDEL Assay 345             | 811174 | DigitalTRACE™ INDEL Assay 962            |
| 811012 | DigitalTRACE™ INDEL Assay 356             | 811175 | DigitalTRACE™ INDEL Assay 971            |
| 811013 | DigitalTRACE™ INDEL Assay 359             | 811176 | DigitalTRACE™ INDEL Assay 987            |
| 811014 | DigitalTRACE™ INDEL Assay 361             | 811177 | DigitalTRACE™ INDEL Assay 990            |
| 811055 | DigitalTRACE <sup>™</sup> INDEL Assay 373 | 811078 | DigitalTRACE™ HLA Assay H005             |
| 811064 | DigitalTRACE <sup>™</sup> INDEL Assay 386 | 811080 | DigitalTRACE <sup>™</sup> HLA Assay H007 |
| 811151 | DigitalTRACE <sup>™</sup> INDEL Assay 396 | 811083 | DigitalTRACE <sup>™</sup> HLA Assay H017 |
| 811015 | DigitalTRACE <sup>™</sup> INDEL Assay 408 | 811084 | DigitalTRACE <sup>™</sup> HLA Assay H020 |
| 811314 | DigitalTRACE <sup>™</sup> INDEL Assay 411 | 811085 | DigitalTRACE <sup>™</sup> HLA Assay H022 |
| 811016 | DigitalTRACE <sup>™</sup> INDEL Assay 425 | 811087 | DigitalTRACE™ HLA Assay H025             |
| 811017 | DigitalTRACE™ INDEL Assay 434             | 811088 | DigitalTRACE <sup>™</sup> HLA Assay H028 |
| 811152 | DigitalTRACE™ INDEL Assay 441             | 811131 | DigitalTRACE <sup>™</sup> HLA Assay H029 |
| 811153 | DigitalTRACE <sup>™</sup> INDEL Assay 450 | 811091 | DigitalTRACE™ HLA Assay H036             |
| 811315 | DigitalTRACE™ INDEL Assay 457             | 811092 | DigitalTRACE™ HLA Assay H038             |

| 811018 DigitalTRACE <sup>™</sup> INDEL Assay 469 811093 DigitalTRACE <sup>™</sup> HLA Assa | y H039 |
|--------------------------------------------------------------------------------------------|--------|
| 811154 DigitalTRACE <sup>™</sup> INDEL Assay 472 811094 DigitalTRACE <sup>™</sup> HLA Assa | y H041 |
| 811155 DigitalTRACE™ INDEL Assay 482 811095 DigitalTRACE™ HLA Assa                         | y H043 |
| 811156 DigitalTRACE <sup>™</sup> INDEL Assay 493 811096 DigitalTRACE <sup>™</sup> HLA Assa | y H045 |
| 811019 DigitalTRACE <sup>™</sup> INDEL Assay 504 811098 DigitalTRACE <sup>™</sup> HLA Assa | y H051 |
| 811054 DigitalTRACE™ INDEL Assay 519 811099 DigitalTRACE™ HLA Assa                         | y H052 |
| 811020 DigitalTRACE™ INDEL Assay 520 811100 DigitalTRACE™ HLA Assa                         | y H053 |
| 811021 DigitalTRACE <sup>™</sup> INDEL Assay 531 811101 DigitalTRACE <sup>™</sup> HLA Assa | y H054 |
| 811022 DigitalTRACE <sup>™</sup> INDEL Assay 548 811133 DigitalTRACE <sup>™</sup> HLA Assa | y H102 |
| 811157 DigitalTRACE <sup>™</sup> INDEL Assay 555 811134 DigitalTRACE <sup>™</sup> HLA Assa | y H103 |
| 811158 DigitalTRACE™ INDEL Assay 567 811279 DigitalTRACE™ HLA Assa                         | y H104 |
| 811159 DigitalTRACE <sup>™</sup> INDEL Assay 574 811280 DigitalTRACE <sup>™</sup> HLA Assa | y H105 |
| 811160 DigitalTRACE <sup>™</sup> INDEL Assay 585 811281 DigitalTRACE <sup>™</sup> HLA Assa | y H106 |
| 811161 DigitalTRACE <sup>™</sup> INDEL Assay 597 811282 DigitalTRACE <sup>™</sup> HLA Assa | y H107 |
| 811023 DigitalTRACE <sup>™</sup> INDEL Assay 601 811283 DigitalTRACE <sup>™</sup> HLA Assa | y H108 |
| 811024 DigitalTRACE <sup>™</sup> INDEL Assay 615 811284 DigitalTRACE <sup>™</sup> HLA Assa | y H109 |
| 811025 DigitalTRACE <sup>™</sup> INDEL Assay 626 811290 DigitalTRACE <sup>™</sup> HLA Assa | y H110 |
| 811026 DigitalTRACE <sup>™</sup> INDEL Assay 634 811291 DigitalTRACE <sup>™</sup> HLA Assa | y H111 |
| 811316 DigitalTRACE <sup>™</sup> INDEL Assay 647 811292 DigitalTRACE <sup>™</sup> HLA Assa | y H112 |
| 811027 DigitalTRACE <sup>™</sup> INDEL Assay 650 811293 DigitalTRACE <sup>™</sup> HLA Assa | y H113 |
| 811162 DigitalTRACE <sup>™</sup> INDEL Assay 663 811296 DigitalTRACE <sup>™</sup> HLA Assa | y H114 |
| 811163 DigitalTRACE <sup>™</sup> INDEL Assay 670 811297 DigitalTRACE <sup>™</sup> HLA Assa | y H115 |
| 811164 DigitalTRACE <sup>™</sup> INDEL Assay 678 811298 DigitalTRACE <sup>™</sup> HLA Assa | y H116 |
| 811165 DigitalTRACE <sup>™</sup> INDEL Assay 681 811299 DigitalTRACE <sup>™</sup> HLA Assa | y H117 |
| 811166 DigitalTRACE <sup>™</sup> INDEL Assay 694 811300 DigitalTRACE <sup>™</sup> HLA Assa | y H118 |
| 811028 DigitalTRACE <sup>™</sup> INDEL Assay 706 811319 DigitalTRACE <sup>™</sup> HLA Assa | y H120 |
| 811065 DigitalTRACE <sup>™</sup> INDEL Assay 710                                           |        |

| REF    | Name                     | Description                                                                                                                                                                                                                                                                                                                                                           |  |
|--------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 341048 | TRACE Analysis™ Software | Minimum System Requirements: Windows 7, 2 GB RAM, 250 MB free disk<br>space, Network connection allowing TCP/IP traffic to and from port 3500,<br>Microsoft .NET framework 4.5.<br>Recommended System Requirements: Windows 7, 2 GB RAM, Internet<br>connection for license validation and automatic updates, 500 MB free disk<br>space, Microsoft .NET framework 4.5 |  |

| REF    | Name                                            | Description                                                     |
|--------|-------------------------------------------------|-----------------------------------------------------------------|
| 331047 | QTRACE <sup>®</sup> System Operator's<br>Manual | Operator's Manual for QTRACE <sup>®</sup> Analysis System       |
| 331307 | DigitalTRACE™ Operator's<br>Manual              | Operator's Manual for DigitalTRACE <sup>™</sup> Analysis System |

## Materials Sold Separately

## Additional Reagents Required but not Provided

| Item name                                                                                              | Catalog number |
|--------------------------------------------------------------------------------------------------------|----------------|
| Modified TE Buffer (10 mM Tris-HCl, pH 8.0, 0.1 mM EDTA) (also called TE 0.1<br>Buffer or TE-4 Buffer) | Not applicable |

| Molecular grade water (DNase and RNase free) | Not applicable |
|----------------------------------------------|----------------|
| QIAcuity Probe PCR Kit (Qiagen)              | 250102         |
| ddPCR Supermix for Probes (Biorad)           | 1863023        |

## Additional Consumables Required but not Provided

| Item name                                                                                                                   | Catalog number |
|-----------------------------------------------------------------------------------------------------------------------------|----------------|
| Pipette Tips, disposable, sterile, aerosol-resistant, filtered, capable of dispensing up to 20, 200, and 1000 $\mu\text{L}$ | Not applicable |
| 1.5 mL microcentrifuge tubes                                                                                                | Not applicable |
| Lint-free tissue                                                                                                            | Not applicable |
| Gloves, powder-free                                                                                                         | Not applicable |
| 96-well plates or strip tubes                                                                                               | Not applicable |
| Plate seals                                                                                                                 | Not applicable |
| QIAcuity Nanoplate 26k 24-well (Qiagen)                                                                                     | 250001         |
| QIAcuity Nanoplate 26k 8-well (Qiagen)                                                                                      | 250031         |
| QIAcuity Nanoplate 8.5k 96-well (Qiagen)                                                                                    | 250021         |
| QIAcuity Nanoplate 8.5k 24-well (Qiagen)                                                                                    | 250011         |
| DG8 Cartridges (Biorad)                                                                                                     | 1864008        |
| DG8 Gaskets (Biorad)                                                                                                        | 1863009        |
| ddPCR 96-well PCR Plates (Biorad)                                                                                           | 12001925       |
| PCR Plate Heat Seal, foil, pierceable (Biorad)                                                                              | 1814040        |
| Droplet Generation Oil for Probes (Biorad)                                                                                  | 1863005        |
| ddPCR Droplet Reader Oil (Biorad)                                                                                           | 1863004        |

#### Additional Equipment Required but not Provided

| Item name                                                                 | Catalog number |
|---------------------------------------------------------------------------|----------------|
| Adjustable single channel pipettes (0.5-1000 μL capacity)                 | Not applicable |
| Adjustable multi-channel, multi-dispensing pipettes (0.5-200 μL capacity) | Not applicable |
| Vortex mixer with flat rubber platform head                               | Not applicable |
| Centrifuge                                                                | Not applicable |
| Centrifuge with microtiter plate assembly                                 | Not applicable |
| PC for the installation of TRACE Analysis <sup>™</sup> Software           | Not applicable |

#### **DNA Sample Requirements**

Purified DNA should have an  $A_{260}/A_{280}$  ratio between 1.7 and 2.0.

We recommend using a fluorometric method to accurately quantify DNA.

If necessary, DNA should be diluted in 10mM Tris, pH 8.0; 0.1mM EDTA (TE) or nuclease-free  $H_2O$  before use.

Blood samples should be collected in ACD or EDTA anticoagulation tubes. <u>Do NOT use</u> <u>heparinized samples</u>, as this has an inhibitory effect on a PCR

The optimal amount of template DNA to use in genotyping is 5 ng per well for the QTRACE<sup>®</sup> Genotyping plates and 10 ng per well for the DigitalTRACE<sup>™</sup> Genotyping plates. To streamline the process, validate your DNA purification procedure so you can use a set volume corresponding to 1-10 ng DNA.

The optimal amount of template DNA to use in chimeric mixture analysis depends on the desired sensitivity detection limit.

The following chart shows the relationship between input DNA amounts and sensitivity. These calculations assume at least 10 copies of the minor component DNA in the total amount of DNA.

| Input DNA (ng) | # Cells | Sensitivity % |
|----------------|---------|---------------|
| 150            | 22 727  | 0.04%         |
| 100            | 15 151  | 0.07%         |
| 50             | 7 576   | 0.13%         |
| 25             | 3 788   | 0.26%         |
| 12.5           | 1 894   | 0.53%         |
| 6.25           | 947     | 1.06%         |

| Sensitivity % | # Cells | Input DNA (ng) |
|---------------|---------|----------------|
| 0.05%         | 20 000  | 132            |
| 0.10%         | 10 000  | 66             |
| 1.00%         | 1 000   | 7              |
| 2.00%         | 500     | 3              |
| 5.00%         | 200     | 1              |

### Warnings

For Research Use Only. Not for use in diagnostic procedures.

Use good laboratory practices for sample handling and tracking.

Use only recommended materials, procedures, and equipment.

Use sterile disposable pipettes and filtered pipette tips.

Wear appropriate personal protective equipment (*e.g.*, safety glasses, disposable gloves, and protective clothing) when handling samples and reagents.

Clean and disinfect all work surfaces with a 10% bleach (0.525% sodium hypochlorite) solution and follow with 70% ethanol, ensuring that all bleach residue is removed.

Assays should be run by individuals experienced in good laboratory practices and who have been previously trained to use the equipment by the original equipment manufacturer (OEM). Operate, calibrate and maintain all instruments and equipment according to procedures provided by the manufacturers.

To reduce the risk of contamination, the area where amplified DNA is handled must be physically isolated from the work areas for sample preparation and qPCR setup. Do not use components past their expiration date.

Do not dilute reagents.

Visually inspect wells or tubes after pipetting steps to detect operator errors with pipetting, sample transfer, etc.

To prevent repeated freeze/thaw cycling of reagents during frozen storage, do not store reagents within freezers that use an automatic defrost function (*i.e.*, frost-free).

Avoid microbial and nuclease contamination of reagents when removing aliquots from reagent tubes.

To prevent contamination, after aliquots are removed do not return the remaining volume to the original tube.

Comply with all local, state, or national laws and regulations related to chemical storage and disposal.

**CHEMICAL HAZARD.** Ethanol is a flammable liquid and vapor. Exposure can cause eye, skin, and upper respiratory tract irritation. Prolonged or repeated contact can dry the skin. Exposure can cause central nervous system depression and liver damage. Keep away from heat, sparks, and flame. Read the MSDS and follow the handling instructions. Wear appropriate protective eyewear, clothing and gloves.

**CHEMICAL HAZARD.** Bleach (sodium hypochlorite) is a corrosive liquid and vapor. Exposure can cause severe irritation or damage to eyes, skin and the respiratory system. Harmful if swallowed. Prolonged or repeated contact can lead to sensitization (*e.g.,* irritation) if skin damage occurs during exposure. Medical conditions that can be aggravated by exposure to high concentrations of vapor or mist include heart conditions or chronic respiratory problems such as asthma, emphysema, chronic bronchitis or obstructive lung disease. Read the MSDS and follow the handling instructions. Wear appropriate protective eyewear, clothing, and gloves.

TRACE Analysis<sup>™</sup> Software does not provide a mechanism to edit data files obtained from the qPCR and dPCR System or result files once they are created.

## **Shipping Conditions**

The QTRACE<sup>®</sup>, DigitalTRACE<sup>™</sup> and MultiTRACE<sup>™</sup> Genotyping Plates are shipped at ambient temperature. The QTRACE<sup>®</sup> PCR Master Mix, QTRACE<sup>®</sup> INDEL Assays, QTRACE<sup>®</sup> HLA Assays, DigitalTRACE<sup>™</sup> INDEL Assays and DigitalTRACE<sup>™</sup> HLA Assays are shipped frozen.

Examine the shipment upon receipt and if the integrity of the products has been compromised during shipment, immediately contact your local customer support representative.

#### **Storage and Handling Requirements**

Upon receipt, the individual components should be stored according to the temperatures listed on the labels.

**Note:** When storage recommendations are observed, both unopened and opened/recapped tubes are stable until the expiration date indicated on the label. genotyping plates are stable when stored in the air-tight pouch containing a desiccant bag. Do not use any component after the expiration date.

Do not use any component that visibly shows signs of having been compromised (*e.g.*, particulate matter, presence of foreign debris, cloudy appearance, discoloration).

## **Technical Support**

For technical assistance and more information:

Please contact your local distributor

France bionobis 7 rue Nicolas Copernic 78280 Guyancourt - SQY France

Tél : 01 30 43 01 55 Fax : 01 30 43 01 15 Email: <u>info@bionobis.com</u> https://www.bionobis.com

<u>Iberia</u> Werfen Plaza Europa, 21-23 08908 L'Hospitalet de Llobregat Barcelona, Spain

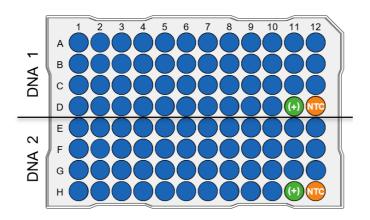
Tel: +34 93 401 01 01 Email: <u>customerservice-es@werfen.com</u> https://www.werfen.com/es/es

Estonia Quantum Eesti AS Tiigrisilma 8 Räni alevik Kambja vald 61708 Tartu, Estonia

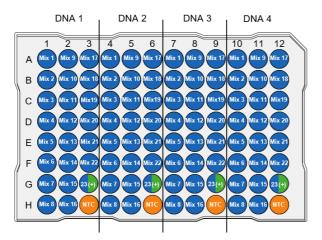
Tel: +372 7 301 321 Email: <u>quantum@quantum.ee</u> https://quantum.ee/

<u>Turkiye</u> ATC Genomics Galip Erdem Cad. 607. Sok. No:9 06550 Çankaya - Ankara, Turkiye

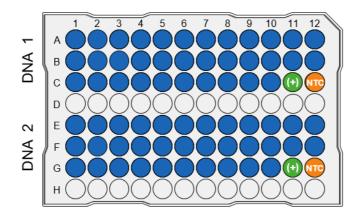
Tel: +90 312 496 43 14 Email: bilgi@atc.com.tr http://www.atc.com.tr or **JETA Molecular** Krommewetering 101C 3543 AN, Utrecht The Netherlands


Tel: +31 (0)6 54 13 66 97 Email: <u>info@jetabv.com</u> https://www.jetamolecular.com

## **Genotyping Test**


## The QTRACE<sup>®</sup> Analysis System

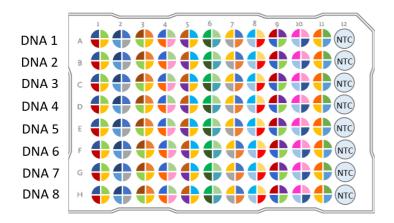
The DNAs that comprise a mixed DNA sample are analyzed using a QTRACE<sup>®</sup> Genotyping Plate and QTRACE<sup>®</sup> qPCR Master Mix, to identify all of the informative assays for the samples. An informative assay is an assay for a marker allele that is present (positive) in one individual genome *and* absent (negative) in the other genome.


The genotyping plate contains a duplicate set of assays: the 46 quantification assays and the reference (RNaseP) assay that serves as both a positive control and a No Template Control (NTC), pre-dispensed and dried in an optical qPCR plate. The QTRACE<sup>®</sup> qPCR Master Mix comes supplied with dUTP and UNG for built-in carryover contamination control.

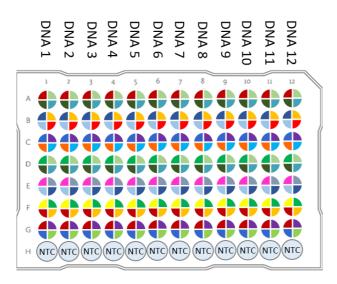


The multiplexed version of the genotyping plate (MultiTRACE<sup>™</sup>) contains a quadruplicate set of assays: the 45 quantification assays and the reference (RNaseP) assay that serves as both a positive control and a No Template Control (NTC), pre-dispensed and dried in an optical qPCR plate.




The Extended Panel genotyping plate can be used in rare cases including patients receiving a second transplant or highly similar siblings, where there may be need for additional markers to the standard QTRACE genotyping plate. It contains a duplicate set of 34 quantification assays and the reference (RNaseP) assay that serves as both a positive control and a No Template Control (NTC), pre-dispensed and dried in an optical qPCR plate.




#### The DigitalTRACE<sup>™</sup> Analysis System

The DNAs that comprise a mixed DNA sample are analyzed using a DigitalTRACE<sup>™</sup> or MultiTRACE<sup>™</sup> Genotyping Plate, to identify all of the informative assays for the samples. An informative assay is an assay for a marker allele that is present (positive) in one individual genome and absent (negative) in the other genome.

The DigitalTRACE<sup>™</sup> Genotyping Plate contains a set of 43 quantification assays and the reference (RNase P) assay that serves as both a positive control and a No Template Control (NTC). The assay sets are pre-arrayed in rows.



The DigitalTRACE<sup>™</sup> EP QIAcuity Genotyping Plate represents an extended panel of dPCR markers that can be used for dPCR monitoring in the case of need for additional markers allowing to distinguish between donor and recipient DNA. This plate contains a set of 27 quantification assays and the reference (RNase P) assay that serves as both a positive control and a No Template Control (NTC). The assay sets are pre-arrayed in columns.



Alternatively, the MultiTRACE<sup>™</sup> Genotyping Plates can be used for a dPCR genotyping. The MultiTRACE<sup>™</sup> Genotyping Plates contain the quantification assays in FAM and the reference (RNase P) assay that serves as both a positive control and a No Template Control (NTC) in HEX.

#### Protocol

Before setting up an experiment, select the instrument as well as the type and version of the genotyping plate used.



button and choose from the available instruments and

#### The QTRACE® Analysis System

Press the "Preferences" genotyping plate types.

To generate a new record in TRACE Analysis<sup>™</sup> Software, in the Section labeled "Recipient" enter the Recipient Name, Recipient Identifier and a unique Sample Identifier. While "Date of Birth" is an optional field for all samples, a "Date of Transplant" must be entered, if you ultimately want to have the data stored and reported in a temporal manner.

| Re                  | cipient 🜏        |
|---------------------|------------------|
| Recipient Name      |                  |
| Recipient ID        |                  |
| Sample ID           |                  |
| Concentration ng/ul | 20               |
| Date of Birth       | XXX-XXX-XXXXX 15 |
| Date of Transplant  | XX-XX-XXXX IS    |
| Gender              | © Male © Female  |
| Comment             |                  |
| Disease Type        | •                |
| D                   | lonor 🛛 🖌 🗙      |
| Donor Name          |                  |
| Donor ID            |                  |
| Sample ID           |                  |
| Concentration ng/ul | 20               |
| Gender              | © Male ⊚ Female  |
| Comment             |                  |

For a sample which should be genotyped against the Recipient sample, enter the Donor Name, Donor Identifier and unique Sample Identifier. You can comparatively genotype up to two samples on a single standard plate or up to four samples on a single multiplexed plate using TRACE Analysis™ Software. TRACE Analysis™ Software also allows you to virtually compare multiple samples, independent of when they were genotyped. Based on the data from verification studies, JETA Molecular recommends the use of 5ng DNA input per well for genotyping. (DNA inputs are customized in the software's <u>Preferences</u> for Concentrations).

Once all samples to be comparatively genotyped are entered into the Sample window, press the

"Add Typing Samples" button to add the samples to the plate set up file. You will see the samples now added to the 96 well plate in the middle of the screen.

When using a multiplexed version of the QTRACE<sup>®</sup> Genotyping Plate, you may add the four DNA samples to be genotyped as two couples Recipient/Donor (added to the plate in two steps, the second couple after the first one). In this case, TRACE Analysis<sup>™</sup> Software generates a separate genotyping report for each couple Recipient/Donor.

Alternatively, the four DNA samples may be added to the plate (in one single step) as one Recipient and three Donors, using the Add Donor button:

Add Donor 🗧 🕇

In this case, TRACE Analysis<sup>™</sup> Software generates a single genotyping report containing all four DNA samples genotyped.

Sample Layout View for 2 Samples being genotyped in the standard QTRACE<sup>®</sup> genotyping plate (left) and in the multiplexed genotyping plate (right):

| A | James<br>1234<br>240 | James<br>1234<br>601 | James<br>1234<br>768 | James<br>1234<br>312 | James<br>1234<br>832 | James<br>1234<br>948 | James<br>1234<br>137 | James<br>1234<br>469 | James<br>1234<br>531 | James<br>1234<br>386 | James<br>1234<br>736    | James<br>1234<br>548 |   |  |
|---|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|-------------------------|----------------------|---|--|
| 3 | James<br>1234<br>425 | James<br>1234<br>361 | James<br>1234<br>710 | James<br>1234<br>148 | James<br>1234<br>803 | James<br>1234<br>907 | James<br>1234<br>520 | James<br>1234<br>345 | James<br>1234<br>267 | James<br>1234<br>784 | James<br>1234<br>634    | James<br>1234<br>434 |   |  |
| 2 | James<br>1234<br>209 | James<br>1234<br>706 | James<br>1234<br>326 | James<br>1234<br>721 | James<br>1234<br>626 | James<br>1234<br>840 | James<br>1234<br>359 | James<br>1234<br>954 | James<br>1234<br>854 | James<br>1234<br>615 | James<br>1234<br>408    | James<br>1234<br>824 | ſ |  |
| ) | James<br>1234<br>504 | James<br>1234<br>650 | James<br>1234<br>235 | James<br>1234<br>916 | James<br>1234<br>748 | James<br>1234<br>356 | James<br>1234<br>819 | James<br>1234<br>755 | James<br>1234<br>519 | James<br>1234<br>373 | James<br>1234<br>RNaseP | NTC<br>RNaseP        |   |  |
|   | Julie<br>4567<br>240 | Julie<br>4567<br>601 | Julie<br>4567<br>768 | Julie<br>4567<br>312 | Julie<br>4567<br>832 | Julie<br>4567<br>948 | Julie<br>4567<br>137 | Julie<br>4567<br>469 | Julie<br>4567<br>531 | Julie<br>4567<br>386 | Julie<br>4567<br>736    | Julie<br>4567<br>548 |   |  |
|   | Julie<br>4567<br>425 | Julie<br>4567<br>361 | Julie<br>4567<br>710 | Julie<br>4567<br>148 | Julie<br>4567<br>803 | Julie<br>4567<br>907 | Julie<br>4567<br>520 | Julie<br>4567<br>345 | Julie<br>4567<br>267 | Julie<br>4567<br>784 | Julie<br>4567<br>634    | Julie<br>4567<br>434 | ļ |  |
| 3 | Julie<br>4567<br>209 | Julie<br>4567<br>706 | Julie<br>4567<br>326 | Julie<br>4567<br>721 | Julie<br>4567<br>626 | Julie<br>4567<br>840 | Julie<br>4567<br>359 | Julie<br>4567<br>954 | Julie<br>4567<br>854 | Julie<br>4567<br>615 | Julie<br>4567<br>408    | Julie<br>4567<br>824 |   |  |
| ł | Julie<br>4567<br>504 | Julie<br>4567<br>650 | Julie<br>4567<br>235 | Julie<br>4567<br>916 | Julie<br>4567<br>748 | Julie<br>4567<br>356 | Julie<br>4567<br>819 | Julie<br>4567<br>755 | Julie<br>4567<br>519 | Julie<br>4567<br>373 | Julie<br>4567<br>RNaseP | NTC<br>RNaseP        |   |  |

| ł | Brian                   | Brian                   | Brian         | Cindy                   | Cindy                   | Cindy         | Jim                   |                      |               | AL .                 |                      |               |
|---|-------------------------|-------------------------|---------------|-------------------------|-------------------------|---------------|-----------------------|----------------------|---------------|----------------------|----------------------|---------------|
| ١ | 4321                    | 4321                    | 4321          | 7654                    | 7654                    | 7654          | 9876                  | 5876                 | 9876          | 6543                 | 6543                 | 6543          |
|   | Mix028                  | Mix036                  | Mix044        | Mix028                  | Mix036                  | Mix044        | Mix028                | Mix036               | Mix044        | Mix028               | Mix036               | Mix044        |
| 3 | Brian                   | Brian                   | Brian         | Cindy                   | Cindy                   | Cindy         | Jim                   | Jim                  | Jim           | .111                 | Jill                 | Jill          |
|   | 4321                    | 4321                    | 4321          | 7654                    | 7654                    | 7654          | 9876                  | 9876                 | 9876          | 6543                 | 6543                 | 6543          |
|   | Mix029                  | Mix037                  | Mix045        | Mix029                  | Mix037                  | Mix045        | Mix029                | Mix037               | Mix045        | Mix029               | Mix037               | Mix045        |
| , | Brian                   | Brian                   | Brian         | Cindy                   | Cindy                   | Cindy         | Jim                   | Jim                  | Jim           | .HI                  | Jill                 | Jill          |
|   | 4321                    | 4321                    | 4321          | 7654                    | 7654                    | 7654          | S876                  | S076                 | SE76          | 6543                 | 6543                 | 6543          |
|   | Mix030                  | Mix038                  | Mix046        | Mix030                  | Mix038                  | Mix046        | Mix030                | Mix038               | Mix046        | Mix030               | Mix038               | Mix046        |
| ) | Brian                   | Brian                   | Brian         | Cindy                   | Cindy                   | Cindy         | Jim                   | Jim                  | Jim           | АП                   | ,511                 | ЯІ            |
|   | 4321                    | 4321                    | 4321          | 7654                    | 7654                    | 7654          | 9876                  | S876                 | 9876          | 6543                 | 6543                 | 6543          |
|   | Mix031                  | Mix039                  | Mix047        | Mix031                  | Mix039                  | Mix047        | Mix031                | Mix039               | Mix047        | Мін031               | Mix439               | Мінф47        |
|   | Brian                   | Brian                   | Brian         | Cindy                   | Cindy                   | Cindy         | Jim                   | Jim                  | Jim           | .fil                 | Jil                  | ,81           |
|   | 4321                    | 4321                    | 4321          | 7654                    | 7654                    | 7654          | 9876                  | 5876                 | 9876          | 6543                 | 6543                 | 6543          |
|   | Mix032                  | Mix040                  | Mix048        | Mix032                  | Mix040                  | Mix048        | Mix032                | Mix040               | Mix048        | Mix032               | Mix040               | Mix648        |
|   | Brian                   | Brian                   | Brian         | Cindy                   | Cindy                   | Cindy         | Jim                   | Jim                  | Jim           | .68                  | JEE                  | Jil           |
|   | 4321                    | 4321                    | 4321          | 7654                    | 7654                    | 7654          | S876                  | 5876                 | SE76          | 6543                 | 6543                 | 6543          |
|   | Mix033                  | Mix041                  | Mix049        | Mix033                  | Mix041                  | Mix049        | Mix033                | Mix041               | Mix049        | Min033               | Miss041              | Mix649        |
| 3 | Brian                   | Brian                   | Brian         | Cindy                   | Cindy                   | Cindy         | Jim                   | Jim                  | Jim           | 581                  | Jil                  | Jill          |
|   | 4321                    | 4321                    | 4321          | 7654                    | 7654                    | 7654          | S876                  | 5876                 | SE76          | 6543                 | 6543                 | 6543          |
|   | Mix034                  | Mix042                  | Mix050        | Mix034                  | Mix042                  | Mix050        | Mix034                | Mix042               | Mix050        | Mix034               | Mix042               | Mix050        |
| ł | Brian<br>4321<br>Mix035 | Brian<br>4321<br>Mix043 | NTC<br>RNaseP | Cindy<br>7654<br>Mix035 | Cindy<br>7654<br>Mix043 | NTC<br>RNaseP | Jim<br>5876<br>Mix035 | 5m<br>5876<br>Miy043 | NTC<br>RNaseP | 38<br>6543<br>Mix035 | ЛІ<br>6543<br>Мін043 | NTC<br>RNaseP |

The colors in the small plate images (Sample View and Assay View) at the bottom of the window are enabled in the large plate image, by touching the colored plate image of interest. By touching the same image again, the large plate colors disappear. (For Genotyping, the assays are already in the wells and are not added by the operator).

Once the samples have been added to your plate, and the experiment name and operator-ID

have been entered, press the "Export Setup to PCR" button.

Browse to the location where you want the file saved and name it as you wish. This file can then be imported into your qPCR machine's QTRACE<sup>®</sup> template to execute the qPCR analysis.

Once the file is saved, TRACE Analysis<sup>™</sup> Software generates a protocol, based on the experimental inputs and the settings in the preferences menu.

The following protocol is an example output from TRACE Analysis<sup>™</sup> Software for the Genotyping procedure using a <u>standard genotyping plate</u>:

#### Set up all reactions in a pre-PCR lab, under ambient conditions without ice.

Open a QTRACE<sup>®</sup> Genotyping Plate Pack and remove the genotyping plate.

Label the genotyping plate with the genotyping test name.

Collect the two DNA samples to be screened, as well as QTRACE<sup>®</sup> qPCR Master Mix and deionized  $H_2O$ . Briefly vortex and centrifuge all tubes before opening

Label three, 1.5 mL microcentrifuge tubes:

Sample 1 Mix Sample 2 Mix NTC Mix

For each sample to be genotyped, prepare a qPCR Master Mix containing sample DNA, deionized  $H_2O$  and QTRACE<sup>®</sup> qPCR Master Mix as suggested by QTRACE<sup>®</sup> Software in Table 1. A No Template Control (NTC) Mix is prepared with de-ionized  $H_2O$  and QTRACE<sup>®</sup> qPCR Master Mix.

#### Table 1. qPCR Master Mix Composition

|                                     | 1             |                |
|-------------------------------------|---------------|----------------|
| Sample 1 qPCR Mix                   | <u>1X</u>     | <u>50X</u>     |
| QTRACE <sup>®</sup> qPCR Master Mix | 5.0ul         | 250.0ul        |
| "recipient ID" DNA                  | 0.8ul         | 40.0ul         |
| H <sub>2</sub> O                    | <u>19.2ul</u> | <u>960.0ul</u> |
|                                     | 25.0ul        | 1250.0ul       |
|                                     |               |                |
| Sample 2 qPCR Mix                   | <u>1X</u>     | <u>50X</u>     |
| QTRACE <sup>®</sup> qPCR Master Mix | 5.0ul         | 250.0ul        |
| "Donor ID" DNA                      | 0.1ul         | 5ul            |
| H <sub>2</sub> O                    | <u>19.9ul</u> | <u>955ul</u>   |
|                                     | 25.0ul        | 1250.0ul       |
|                                     |               |                |
| NTC qPCR Mix                        | <u>1X</u>     | <u>3X</u>      |
| QTRACE <sup>®</sup> qPCR Master Mix | 5.0ul         | 15.0ul         |
| H <sub>2</sub> O                    | <u>20.0ul</u> | <u>60.0ul</u>  |
|                                     | 25.0ul        | 75.0ul         |
|                                     |               |                |

Vortex each tube to thoroughly mix the contents and centrifuge briefly to collect the reaction mix at the bottom of the tube.

Remove the adhesive cover from the genotyping plate.

Refer to the DNA Sample Layout Plate Layout at the end of the protocol for pipetting the following:

Dispense 25  $\mu$ l of the Sample 1 Mix into Wells A1-D6 and in Well D11 of the genotyping plate.

Dispense 25  $\mu$ l of the Sample 2 Mix into Wells E1-H6 and in Well H11 of the genotyping plate. Dispense 25  $\mu$ l of the 5X PCR Master Mix/NTC mixture to wells D12 and H12. **A repeat pipettor is recommended to minimize pipetting repetition and increase accuracy.** 

Visually inspect plate wells from the sides and bottom to confirm consistent volume. - *For use with qPCR machines which do not accept standard ABI MicroAmp Optical Plates:* Transfer the genotyping assay reactions to a 96-well plate for your instrument using a multichannel pipette.

Seal the plate completely with MicroAmp<sup>®</sup> Optical Adhesive Film using the MicroAmp<sup>®</sup> Adhesive Film Applicator.

**IMPORTANT! Vortex the plate to mix the contents of each well**. Centrifuge the plates briefly using a plate centrifuge to collect the contents at the bottom of the wells. Load the plate into your qPCR machine. Open a pre-configured QTRACE<sup>®</sup> qPCR template and save the file with a unique name. (If you don't have a template, please see thermal cycling profiles below.

Import the Sample Setup sheet generated by TRACE Analysis<sup>™</sup> Software.

Save the file and start the qPCR run.

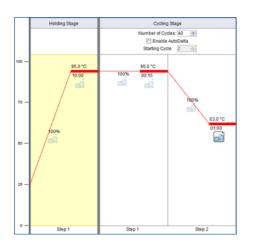
The following protocol is an example output from TRACE Analysis<sup>™</sup> Software for the Genotyping procedure using a <u>multiplexed genotyping plate</u>:

#### Set up all reactions in a pre-PCR lab, under ambient conditions without ice.

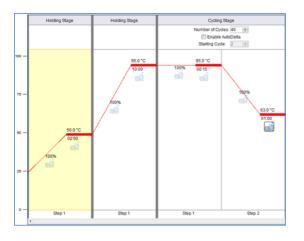
Open a MultiTRACE<sup>™</sup> Genotyping Plate Pack and remove the genotyping plate. Label the genotyping plate with the genotyping test name. Collect the four DNA samples to be screened, as well as QTRACE<sup>®</sup> qPCR Master Mix and deionized H2O. Briefly vortex and centrifuge all tubes before opening Label five, 1.5 mL microcentrifuge tubes:

Sample 1 Mix Sample 2 Mix Sample 3 Mix Sample 4 Mix NTC Mix

For each sample to be genotyped, prepare a qPCR Master Mix containing sample DNA, deionized H<sub>2</sub>O and QTRACE<sup>®</sup> qPCR Master Mix as suggested by TRACE Analysis<sup>™</sup> Software in Table 2. A No Template Control (NTC) Mix is prepared with de-ionized H<sub>2</sub>O and QTRACE<sup>®</sup> qPCR Master Mix.


Table 2. qPCR Master Mix Composition – MultiTRACE<sup>™</sup> plates

| Sample 1 qPCR Mix                   | <u>1X</u>     | <u>25X</u>     |
|-------------------------------------|---------------|----------------|
| QTRACE <sup>®</sup> qPCR Master Mix | 5.0ul         | 125.0ul        |
| "Recipient 1 ID"                    |               |                |
| DNA                                 | 0.3ul         | 7.5ul          |
| H <sub>2</sub> O                    | <u>19.7ul</u> | <u>492.5ul</u> |
|                                     | 25.0ul        | 625.0ul        |


| Sample 2 qPCR Mix                                       | <u>1X</u>     | <u>25X</u>     |
|---------------------------------------------------------|---------------|----------------|
| QTRACE <sup>®</sup> qPCR Master Mix                     | 5.0ul         | 125.0ul        |
| "Donor 1 ID" DNA                                        | 0.2ul         | 5.4ul          |
| H <sub>2</sub> O                                        | <u>19.8ul</u> | <u>494.6ul</u> |
|                                                         | 25.0ul        | 625.0ul        |
|                                                         |               |                |
| Sample 3 qPCR Mix                                       | <u>1X</u>     | <u>25X</u>     |
| QTRACE <sup>®</sup> qPCR Master Mix<br>"Recipient 2 ID" | 5.0ul         | 125.0ul        |
| DNA                                                     | 0.4ul         | 8.9ul          |
| H <sub>2</sub> O                                        | <u>19.6ul</u> | <u>491.1ul</u> |
|                                                         | 25.0ul        | 625.0ul        |
|                                                         |               |                |
| Sample 2 qPCR Mix                                       | <u>1X</u>     | <u>25X</u>     |
| QTRACE <sup>®</sup> qPCR Master Mix                     | 5.0ul         | 125.0ul        |
| "Donor 2 ID" DNA                                        | 0.1ul         | 2.5ul          |
| H <sub>2</sub> O                                        | <u>19.9ul</u> | <u>497.5ul</u> |
|                                                         | 25.0ul        | 625.0ul        |
|                                                         |               |                |

#### Thermal Cycling Protocol for QTRACE® System Products

The QTRACE<sup>®</sup> System will deliver optimal results when the following thermal profile is used in qPCR.



For labs which require use of molecular tests with built-in carryover contamination control, the QTRACE<sup>®</sup> qPCR Master Mix contains dUTP and Uracil N-Glycosylase (UNG) enzyme. In order to use this enhanced capability of the master mix, add a 2 minute hold at 50°C, prior to the enzyme activation/initial denaturation step.



#### The DigitalTRACE<sup>™</sup> Analysis System

#### **Genotyping Test Protocol - QIAcuity**

Change the instrument type in the Preferences of the TRACE Analysis<sup>™</sup> Software to QIAcuity and Plate type to QIAcuity, v1.

To generate a new record in TRACE Analysis<sup>™</sup> Software, in the Section labeled "Recipient" enter the Recipient Name, Recipient Identifier and a unique Sample Identifier. While "Date of Birth" is an optional field for all samples, a "Date of Transplant" must be entered, if you ultimately want to have the data stored and reported in a temporal manner.

| Re                   | cipient 🖌 🤶     |
|----------------------|-----------------|
| Recipient First Name |                 |
| Recipient Last Name  |                 |
| Recipient ID         |                 |
| Sample ID            |                 |
| Concentration ng/ul  | 100             |
| Date of Birth        | XX-XX-X000X 15  |
| Date of Transplant   | XX-XX-XXXX 15   |
| Gender               | O Male O Female |
| Comment              |                 |
| Disease Type         | ~               |
| D                    | )onor 🗸 🗙       |
| Donor First Name     |                 |
| Donor Last Name      |                 |
| Donor ID             |                 |
| Sample ID            |                 |
| Concentration ng/ul  | 100             |
| Date of Birth        | XX-XX-X000X 15  |
| Gender               | O Male O Female |
| Comment              |                 |

For a sample which should be genotyped against the Recipient sample, enter the Donor Name, Donor Identifier and unique Sample Identifier. You can genotype up to eight samples on a single plate using TRACE Analysis<sup>™</sup> Software. TRACE Analysis<sup>™</sup> Software also allows you to virtually compare multiple samples, independent of when they were genotyped. Based on the data from verification studies, JETA Molecular recommends the use of 10 ng DNA input per well for genotyping. (DNA inputs are customized in the software's <u>Preferences</u> for Concentrations). Enter the concentrations of your samples to let the software calculate with.

After all samples to be comparatively genotyped are entered into the Sample window, press the

Screen "Add Typing Samples" button to add the samples to the plate set up file. You will see the samples now added to the 96-well plate in the middle of the screen.

Sample Layout View for 8 Samples being genotyped in the DigitalTRACE<sup>™</sup> QIAcuity plate:

| L. | Tom<br>001<br>QIAMix   | Tom<br>001<br>QIAMix    | Tom<br>001<br>QIAMixt   | Tom<br>001<br>QIAMix(     | 001 |                         |     | Tom<br>001<br>QIAMixt   | 001 |     | Tom<br>001<br>QIAMixt    | NTC<br>NTC Mis |
|----|------------------------|-------------------------|-------------------------|---------------------------|-----|-------------------------|-----|-------------------------|-----|-----|--------------------------|----------------|
|    | Alex<br>002<br>QIAMix  | Alex<br>002<br>QIAMixt  | Alex<br>002<br>QIAMixt  | Alex<br>002<br>QIAMix(    | 002 | Alex<br>002<br>QIAMixt  | 002 | Alex<br>002<br>QIAMix(  | 002 | 002 | Alex<br>002<br>QIAMix(   | NTC<br>NTC Mi> |
|    | Julie<br>003<br>QIAMix | Julie<br>003<br>QIAMix  | Julie<br>003<br>QIAMixt | Julie<br>003<br>QIAMix(   | 003 |                         | 003 | 003                     | 003 | 003 | Julie<br>003<br>QIAMix(  | NTC<br>NTC Mib |
| )  | 004                    | James<br>004<br>QIAMixt | James<br>004<br>QIAMixt | James<br>004<br>QIAMix(   | 004 |                         | 004 | 004                     | 004 |     | James<br>004<br>QIAMix(  | NTC<br>NTC Mis |
|    | Peter<br>005<br>QIAMix | Peter<br>005<br>QIAMixt | Peter<br>005<br>QIAMixt | Peter<br>005<br>QIAMixt   | 005 | Peter<br>005<br>QIAMixt | 005 | Peter<br>005<br>QIAMix( | 005 | 005 | Peter<br>005<br>QIAMixt  | NTC<br>NTC Mis |
|    | 006                    | 005                     | 006                     | Barbara<br>006<br>QIAMix( | 006 | 006                     | 006 | 006                     | 006 |     | 006                      | NTC Mb         |
|    | John<br>007<br>QIAMix  | John<br>007<br>QIAMix   | John<br>007<br>QIAMixi  | John<br>007<br>QIAMix(    | 007 |                         | 007 | 007                     | 007 | 007 | John<br>007<br>QIAMix(   | NTC<br>NTC Mb  |
|    | 008                    | Ashley<br>008<br>QIAMix | 008                     | Ashley<br>008<br>QIAMix(  | 008 |                         | 800 | 008                     | 008 | 008 | Ashley<br>008<br>QIAMixt | NTC<br>NTC Mis |

The colors in the small plate images (Sample View and Assay View) at the bottom of the window are enabled in the large plate image, by touching the colored plate image of interest. By touching the same image again, the large plate colors disappear. (For Genotyping, the assays are already in the wells and are not added by the operator).

Once the samples have been added virtually to your plate, and the experiment name have been



Browse to the location where you want the file saved and name it as you wish. This file can then be imported into your dPCR machine's DigitalTRACE template to execute the dPCR analysis.

Once the file is saved, TRACE Analysis<sup>™</sup> Software generates a protocol, based on the experimental inputs and the settings in the Preferences menu. Print out this protocol.

- 1. Set up all reactions in a pre-PCR lab, under ambient conditions without ice. 2. Collect all DNA samples to be screened, as well as QIAcuity typing plate together with 4x Probe PCR Master Mix and
- de-ionized H<sub>2</sub>O.
- ueronnee vnpo. Briefly vortex and centrifuge all tubes before opening. For each sample to be genotyped, lable a tube and a Mix containing sample DNA, de-ionized H<sub>2</sub>O and 4x Probe PCR Master Mix as suggested by TRACE Analysis<sup>w</sup> Software in Table 1. A No Template Control (NTC) Mix is prepared with

de-ionized H<sub>2</sub>O and 4x Probe PCR Master Mix. \* - Make a Ten-Fold Dilution (1:10) of Sample

| Table 1. Master Mix Composition |         |          |  |  |  |  |  |  |  |  |
|---------------------------------|---------|----------|--|--|--|--|--|--|--|--|
| Sample 1 dPCR Mix               | 1 x     | 13 x     |  |  |  |  |  |  |  |  |
| 4x Probe PCR Master Mix         | 3,0 µl  | 39,0 µl  |  |  |  |  |  |  |  |  |
| 001 DNA                         | 0,5 µl  | *6,5 µl  |  |  |  |  |  |  |  |  |
| H₂O                             | 8,5 µl  | 110,5 µl |  |  |  |  |  |  |  |  |
|                                 | 12,0 µl | 156,0 µl |  |  |  |  |  |  |  |  |
|                                 |         |          |  |  |  |  |  |  |  |  |
| Sample 2 dPCR Mix               | 1 x     | 13 x     |  |  |  |  |  |  |  |  |
| 4x Probe PCR Master Mix         | 3,0 µl  | 39,0 µl  |  |  |  |  |  |  |  |  |
| 002 DNA                         | 0,5 µl  | *6,5 µl  |  |  |  |  |  |  |  |  |
| H₂O                             | 8,5 µl  | 110,5 µl |  |  |  |  |  |  |  |  |
|                                 | 12,0 µl | 156,0 µl |  |  |  |  |  |  |  |  |
|                                 |         |          |  |  |  |  |  |  |  |  |
| NTC dPCR Mix                    | 1 x     | 10 x     |  |  |  |  |  |  |  |  |
| 4x Probe PCR Master Mix         | 3,0 µl  | 30,0 µl  |  |  |  |  |  |  |  |  |
| H <sub>2</sub> O                | 9,0 µl  | 90,0 µl  |  |  |  |  |  |  |  |  |
|                                 | 12.0.1  | 420.0.1  |  |  |  |  |  |  |  |  |

- 5. Vortex each tube to thoroughly mix the contents and centrifuge briefly to collect the reaction mix at the l the tube.
- 6. Remove the adhesive cover from the genotyping plate
- 7. Deliver 13.2 µl of each Sample Mix and NTC mix to the Typing plate as defined in TRACE Analysis™ Software's Assa Layout view
- 8. An automated multi nannel pipette is recommended in this step to minimize pipetting repet
- accuracy.
- Visually inspect plate wells from the sides and bottom to confirm consistent volur
   Seal the plate with an Adhesive Film.
- 11. IMPORTANT! Vortex the plate to mix the contents of each well. Centrifuge the plates briefly using a plate centrifuge
- to collect the contents at the bottom of the wells
- 12. Remove the Adhesive cover very carefully. 13. Transfer 12 µl of each prepared reaction mix into a single column of a 96-well 8.5K Nanoplate. Seal the Nanop
- with the compatible plate sealer.
- 14. Load the Nanoplate into the QJAcuity digital PCR system 15. Launch the QIAcuity Software Suite.
- 16. Open the DigitalTRACE typing template and import the Sample Setup sheet generated by TRACE Analysis™ Software
- 17 Save the file and start the ru

#### Experiment Setup in QIAcuity Suite Software, v2.5

Create a new QIAcuity Plate by selecting "New Plate".

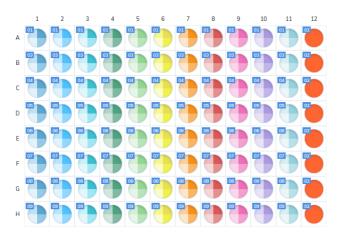
Load a template by selecting "Plate templates..." and import the appropriate DigitalTRACE Genotyping template:

| Plate templates  |
|------------------|
| Import template  |
| Save as template |
|                  |

Press "Save changes". The new plate will appear in the main window of the QIAcuity Software Suite:



Click on the plate name to open the plate configuration procedure. Type in a new plate name and save the changes.


Import the Sample Setup sheet (.csv) generated by TRACE Analysis<sup>™</sup> Software by selecting "Plate layout" tab and "CSV import/export".

Select "Import from CSV".

| Pate List                             | (*) CSV Insertilescen                                                                                                      |           |
|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------|
| 1 2 3 4 5 6 7 8 9 30 11 12            | Active selectors: - Selected wells: 0                                                                                      |           |
| • • • • • • • • • • • • • • • • • • • |                                                                                                                            |           |
|                                       | Import from CSV                                                                                                            | $\otimes$ |
|                                       | Warning: Importing a CSV file will overwrite the existing<br>layout configuration including all reaction mixes and samples |           |
| · 00000000000                         |                                                                                                                            |           |
| • <u> </u>                            | Choose a file or drag it here                                                                                              |           |
|                                       | Concel Im                                                                                                                  | nport     |

Import the plate setup file by clicking on "Import".

Inspect if all your selected samples are represented on the Plate figure.



Select "Done" to finish the setup. Start the run.

#### Thermal Cycling and Imaging Protocol for QIAcuity

The DigitalTRACE<sup>™</sup> System will deliver optimal results when the following thermal profile is used in dPCR:

| Number of cycles | Temperature | Time  |
|------------------|-------------|-------|
| 1                | 95 °C       | 3 min |
| 40               | 95 °C       | 15 s  |
| 40               | 60 °C       | 30 s  |

Use the following imaging parameters:

| Channel | Exposure duration | Gain |
|---------|-------------------|------|
| Green   | 500 ms            | 6    |
| Yellow  | 500 ms            | 6    |
| Orange  | Off               | Off  |
| Red     | 300 ms            | 4    |
| Crimson | 400 ms            | 4    |

#### **Genotyping Test Protocol - Biorad**

Change the instrument type in the Preferences of the TRACE Analysis<sup>™</sup> Software to Biorad QX-200 and Plate type to MultiTRACE, v3.

To generate a new record in TRACE Analysis<sup>™</sup> Software, in the Section labeled "Recipient" enter the Recipient Name, Recipient Identifier and a unique Sample Identifier. While "Date of Birth" is an optional field for all samples, a "Date of Transplant" must be entered, if you ultimately want to have the data stored and reported in a temporal manner.

| Re                   | cipient 🗸 🗠     |
|----------------------|-----------------|
| Recipient First Name |                 |
| Recipient Last Name  |                 |
| Recipient ID         |                 |
| Sample ID            |                 |
| Concentration ng/ul  | 100             |
| Date of Birth        | XX-XX-XXXX 15   |
| Date of Transplant   | XX-XX-XXXX IS   |
| Gender               | O Male O Female |
| Comment              |                 |
| Disease Type         | ~               |
| D                    | lonor 🗸 🗙       |
| Donor First Name     |                 |
| Donor Last Name      |                 |
| Donor ID             |                 |
| Sample ID            |                 |
| Concentration ng/ul  | 100             |
| Date of Birth        | XX-XX-XXXX 15   |
| Gender               | O Male O Female |
| Comment              |                 |

For a sample which should be genotyped against the Recipient sample, enter the Donor Name, Donor Identifier and unique Sample Identifier. You can comparatively genotype up to four samples on a single plate using TRACE Analysis<sup>™</sup> Software. TRACE Analysis<sup>™</sup> Software also allows you to virtually compare multiple samples, independent of when they were genotyped. Based on the data from verification studies, JETA Molecular recommends the use of 10 ng DNA input per well for genotyping. (DNA inputs are customized in the software's Preferences for Concentrations). Enter the concentrations of your samples to let the software calculate with. Once all samples to be comparatively genotyped are entered into the Sample window, press the "Screen" button to add the samples to the plate set up file. You will see the samples now added to the 96-well plate in the middle of the screen.

Sample Layout View for 4 Samples being genotyped in the multiplexed plate:

|   |                       | <u> </u>              |        |                        |                        |               |        |                       |               |        |                         |               |
|---|-----------------------|-----------------------|--------|------------------------|------------------------|---------------|--------|-----------------------|---------------|--------|-------------------------|---------------|
|   | 1                     | 2                     | 3      | 4                      | 5                      | 6             | 7      | 8                     | 9             | 10     | 11                      | 12            |
| A | Tim                   | Tim                   | Tim    | Bert                   | Bert                   | Bert          | Ken    | Ken                   | Ken           | Jenny  | Jenny                   | Jenny         |
|   | 1001                  | 1001                  | 1001   | 1002                   | 1002                   | 1002          | 1003   | 1003                  | 1003          | 1004   | 1004                    | 1004          |
|   | Mix028                | Mix036                | Mix044 | Mix028                 | Mix036                 | Mix044        | Mix028 | Mix036                | Mix044        | Mix028 | Mix036                  | Mix044        |
| B | Tim                   | Tim                   | Tim    | Bert                   | Bert                   | Bert          | Ken    | Ken                   | Ken           | Jenny  | Jenny                   | Jenny         |
|   | 1001                  | 1001                  | 1001   | 1002                   | 1002                   | 1002          | 1003   | 1003                  | 1003          | 1004   | 1004                    | 1004          |
|   | Mix029                | Mix037                | Mix045 | Mix029                 | Mix037                 | Mix045        | Mix029 | Mix037                | Mix045        | Mix029 | Mix037                  | Mix045        |
| С | Tim                   | Tim                   | Tim    | Bert                   | Bert                   | Bert          | Ken    | Ken                   | Ken           | Jenny  | Jenny                   | Jenny         |
|   | 1001                  | 1001                  | 1001   | 1002                   | 1002                   | 1002          | 1003   | 1003                  | 1003          | 1004   | 1004                    | 1004          |
|   | Mix030                | Mix038                | Mix046 | Mix030                 | Mix038                 | Mix046        | Mix030 | Mix038                | Mix046        | Mix030 | Mix038                  | Mix046        |
| D | Tim                   | Tim                   | Tim    | Bert                   | Bert                   | Bert          | Ken    | Ken                   | Ken           | Jenny  | Jenny                   | Jenny         |
|   | 1001                  | 1001                  | 1001   | 1002                   | 1002                   | 1002          | 1003   | 1003                  | 1003          | 1004   | 1004                    | 1004          |
|   | Mix031                | Mix039                | Mix047 | Mix031                 | Mix039                 | Mix047        | Mix031 | Mix039                | Mix047        | Mix031 | Mix039                  | Mix047        |
| E | Tim                   | Tim                   | Tim    | Bert                   | Bert                   | Bert          | Ken    | Ken                   | Ken           | Jenny  | Jenny                   | Jenny         |
|   | 1001                  | 1001                  | 1001   | 1002                   | 1002                   | 1002          | 1003   | 1003                  | 1003          | 1004   | 1004                    | 1004          |
|   | Mix032                | Mix040                | Mix048 | Mix032                 | Mix040                 | Mix048        | Mix032 | Mix040                | Mix048        | Mix032 | Mix040                  | Mix048        |
| F | Tim                   | Tim                   | Tim    | Bert                   | Bert                   | Bert          | Ken    | Ken                   | Ken           | Jenny  | Jenny                   | Jenny         |
|   | 1001                  | 1001                  | 1001   | 1002                   | 1002                   | 1002          | 1003   | 1003                  | 1003          | 1004   | 1004                    | 1004          |
|   | Mix033                | Mix041                | Mix049 | Mix033                 | Mix041                 | Mix049        | Mix033 | Mix041                | Mix049        | Mix033 | Mix041                  | Mix049        |
| G | Tim                   | Tim                   | Tim    | Bert                   | Bert                   | Bert          | Ken    | Ken                   | Ken           | Jenny  | Jenny                   | Jenny         |
|   | 1001                  | 1001                  | 1001   | 1002                   | 1002                   | 1002          | 1003   | 1003                  | 1003          | 1004   | 1004                    | 1004          |
|   | Mix034                | Mix042                | Mix050 | Mix034                 | Mix042                 | Mix050        | Mix034 | Mix042                | Mix050        | Mix034 | Mix042                  | Mix050        |
| Η | Tim<br>1001<br>Mix035 | Tim<br>1001<br>Mix043 |        | Bert<br>1002<br>Mix035 | Bert<br>1002<br>Mix043 | NTC<br>RNaseP |        | Ken<br>1003<br>Mix043 | NTC<br>RNaseP |        | Jenny<br>1004<br>Mix043 | NTC<br>RNaseP |

Once the samples have been added virtually to your plate, and the experiment name have been

entered, press the "Export Setup to PCR" button.

Browse to the location where you want the file saved and name it as you wish. This file can then be imported into your dPCR machine's DigitalTRACE template to execute the dPCR analysis. Once the file is saved, TRACE Analysis<sup>™</sup> Software generates a protocol, based on the experimental inputs and the settings in the preferences menu. Print out this protocol.

2x ddPCR Supermix

- Set up all reactions in a pre-PCR lab, under ambient conditions without ice.
   Open a MultTRACE® Genotyping Plate Pack and remove the genotyping plate.
   Label the genotyping plate with the genotyping test name.
   Collect the four DNA samples to be screened, as well as 2x ddPCR Supermix Master Mix and de-ionized H<sub>2</sub>O. Sriefly vortex and centrifuge all tubes before opening.
   Label five LS ml microcentrifuge tubes:
- - a) Sample 1 Mix b) Sample 1 Mix c) Sample 2 Mix c) Sample 3 Mix d) Sample 4 Mix e) NTC Mix
- 6. For each sample to be genotyped, prepare a ddPCR Mix containing sample DNA, de-ionized H<sub>2</sub>O and 2x ddPCR Supermix as suggested by TRACE Analysis<sup>44</sup> Software in Table 1. A No Template Control (NTC) Mix is prepared with de-ionized H<sub>2</sub>O and 2x ddPCR Supermix.

#### Table 1. Master Mix Composition Sample 1 dPCR Mix 1 x 27 x 2x ddPCR Supermix 1001 DNA ermix 11,0 μl 297,0 μl 0,5 μl 13,5 μl Ногона 0,5 µг 13,5 µг H₂O 10,5 µг 283,5 µг 22,0 µг 594,0 µг Sample 2 dPCR Mix 1 x 27 x 2x ddPCR Supermix 11,0 μl 297,0 μl 1002 DNA 0,5 μl 13,5 μl H₂O 10,5 µl 283,5 µl 22,0 µl 594,0 µl Sample 3 dPCR Mix 1 x 27 x 2x ddPCR Supermix 11,0 µl 297,0 µl 1003 DNA 0,5 µl 13,5 µl H₂O 10,5 µl 283,5 µl 22,0 µl 594,0 µl Sample 4 dPCR Mix 1 x 27 x 2x ddPCR Supermix 1004 DNA 11,0 µl 297,0 µl 0,5 µl 13,5 µl H<sub>2</sub>O 10.5 ul 283.5 ul 22,0 µl 594,0 µl NTC dPCR Mix 1x 5x

|     | H <sub>2</sub> O                                | 11,0 µl          | 55,0 µl                                             |
|-----|-------------------------------------------------|------------------|-----------------------------------------------------|
|     |                                                 | 22,0 µl          | 110,0 µl                                            |
| 7.  | Vortex each tube to thoroughly mix the con-     | tents and cent   | trifuge briefly to collect the reaction mix at the  |
|     | bottom of the tube.                             |                  |                                                     |
| 8.  | Remove the adhesive cover from the genoty       | /ping plate.     |                                                     |
| 9.  | Dispense 22 $\mu l$ of the Sample 1 Mix into We | lls A1-G3 by co  | olumns of the genotyping plate.                     |
| 10. | Dispense 22 µl of the Sample 2 Mix into We      | lls A4-G6 by co  | olumns of the genotyping plate.                     |
| 11. | Dispense 22 $\mu l$ of the Sample 3 Mix into We | lls A7-G9 by co  | olumns of the genotyping plate.                     |
| 12. | Dispense 22 µl of the Sample 4 Mix into We      | ls A10-G12 by    | y columns of the genotyping plate.                  |
| 13. | Dispense 22 µl of the 5X PCR Master Mix/NT      | C mixture to v   | wells H3, H6, H9, H12.                              |
| 14. | A repeat pipettor is recommended to minin       | nize pipetting   | g repetition and increase accuracy.                 |
| 15. | Refer to the DNA Sample Layout Plate Layou      | it at the end of | of the protocol.                                    |
| 16. | Visually inspect plate wells from the sides an  | nd bottom to c   | confirm consistent volume.                          |
| 17. | Seal the plate completely with MicroAmp® (      | Optical Adhesiv  | ive Film using the MicroAmp® Adhesive Film          |
|     | Applicator.                                     |                  |                                                     |
| 18. | IMPORTANT! Vortex the plate to mix the co       | ontents of eac   | ch well.Centrifuge the plates briefly using a plate |
|     | centrifuge to collect the contents at the bott  | tom of the wel   | ells.                                               |
| 19. | Remove the Adhesive cover very carefully.       |                  |                                                     |
| 20. | !!!The following steps from 21 to 26 are on     | ly for manual (  | droplet generator users:                            |
| 21. | Transfer 20 µl of each prepared sample to the   | ne sample well   | lls (middle row) of the DG8 cartridge.              |
| 22. | Add 70 µl of droplet generation oil to each o   | il well of the D | DG8 cartridge.                                      |
| 23. | Hook the gasket over the cartridge holder u     | sing the holes   | on both sides.                                      |
| 24. | Load the cartridge in the QX200 droplet gen     | erator.          |                                                     |
| 25. | When droplet generation is complete, remo       | ve the disposa   | able gasket from the holder and discard it.         |
| 26. | Pipet 40 µl of the contents of the droplets in  | nto a single col | olumn of a 96-well PCR plate.                       |
| 27. | Seal the PCR plate with foil plate seals that a | are compatible   | e with the PX1 PCR plate sealer and the needles     |
|     | in the QX200 droplet reader.                    |                  |                                                     |
| 28. | Place the plate into the thermal cycler for Pl  | CR amplificatio  | on.                                                 |
| 29  | Load the plate after amplification into QX20    | 0 droplet read   | der.                                                |
|     |                                                 |                  |                                                     |
|     | Import the Sample Setup sheet generated b       | y TRACE Analy    | ysis™ Software.                                     |

11,0 µl 55,0 µl

#### **Thermal Cycling Protocol for Biorad**

The DigitalTRACE<sup>™</sup> System will deliver optimal results when the following thermal profile is used in dPCR:

| Number of cycles | Temperature | Time   | Ramp Rate |
|------------------|-------------|--------|-----------|
| 1                | 95 °C       | 10 min | 2 °C/s    |
| 40               | 94 °C       | 30 s   | 2 °C/s    |
| 40               | 59 °C       | 60 s   | 2 °C/s    |
| 1                | 98 °C       | 10 min | 2 °C/s    |

#### **Biorad Droplet Reader Setup in QuantaSoft**

To read the signal after the PCR cycling was completed, setup an experiment in QuantaSoft. Load a template by clicking on Load

#### QTRACE and DigitalTRACE Analysis System Operator's Manual

| QuantaSoft Version 1. | 7.4.0 | 917                 |                                                           |    |        |    |    |   |
|-----------------------|-------|---------------------|-----------------------------------------------------------|----|--------|----|----|---|
| BIO RAD               |       |                     |                                                           | 0  | ptions |    |    |   |
| BIOTAD                | l r F | tup<br>Plate        | Experiments                                               |    |        |    |    |   |
| 1                     |       | 🚰 Load<br>🚽 Save As | ABS                                                       |    |        |    |    |   |
| Setup                 | i Fi  | lemplate            | CNV1<br>CNV2                                              |    |        |    |    |   |
|                       | 6     | New Load            | ABS<br>RED<br>CNV1<br>CNV2<br>CNV2<br>CNV3<br>CNV4<br>GEX |    |        |    |    |   |
| 000                   |       | Save As             | New Edit Remove                                           |    |        |    |    |   |
| Run                   | •     | 01                  | 02                                                        | 03 | 04     | 05 | 06 |   |
| Analyze               | *     | 8                   | Β                                                         | 8  |        | 8  |    | 8 |
| C                     | _     |                     |                                                           |    |        |    |    |   |
| About                 | в     | 8                   | 9                                                         | 9  |        | 9  | 9  | H |
|                       |       |                     |                                                           |    |        |    |    |   |
| Contact Support       | -     |                     |                                                           |    |        |    |    |   |
|                       | с     | 8                   | 8                                                         | 8  |        | 8  |    | 8 |
| XX                    | D     | 8                   | 8                                                         | 8  | 8      | 8  |    | 8 |
| YY                    |       |                     |                                                           |    |        |    |    |   |
|                       | E     | 8                   | 8                                                         | 8  |        | 8  |    | 8 |
| Y                     |       |                     |                                                           |    |        |    |    |   |

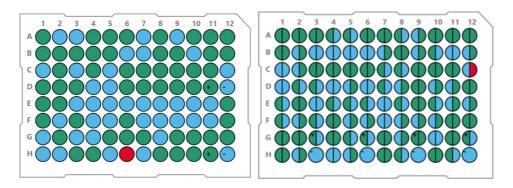
#### Select QS Setup CSV Files as file format



|                 |                                      |                                                   |                                  |                                    |                             |                                  |                                  |                              |                               |                           |                            | – 0 ×                             |
|-----------------|--------------------------------------|---------------------------------------------------|----------------------------------|------------------------------------|-----------------------------|----------------------------------|----------------------------------|------------------------------|-------------------------------|---------------------------|----------------------------|-----------------------------------|
|                 | 230000 Biorad typing                 |                                                   | c                                | Optiona                            |                             |                                  |                                  |                              |                               |                           |                            |                                   |
| BIO RAD         | Setup<br>Plate                       | Experiments                                       |                                  |                                    |                             |                                  |                                  |                              |                               |                           |                            |                                   |
| Setup           | Save As<br>Template<br>New           | ABS<br>RED<br>CNV1<br>CNV2<br>CNV3<br>CNV4<br>GEX |                                  |                                    |                             |                                  |                                  |                              |                               |                           |                            |                                   |
| Bun             | 😭 Load<br>📓 Save As                  | CNV4<br>GEX<br>New Edt Remove                     |                                  |                                    |                             |                                  |                                  |                              |                               |                           |                            |                                   |
| 10211           | * 01<br>1001                         | 02                                                | 03                               | 04                                 | 05                          | 06                               | 07                               | 08                           | 09                            | 10                        | 1004                       | 12                                |
| Analyze         | A85<br>923<br>A 10 167               | A85<br>128<br>1982                                | A85<br>678<br>1777               | 1002<br>▲ A85<br>923<br>107        | A85<br>158<br>158<br>162    | 1002<br>▲ A85<br>● 678<br>■ 777  | AB5<br>222<br>1017               | AB5<br>128<br>138            | A85<br>421<br>1777            | A85<br>923<br>917         | A85<br>158<br>192          | ADS<br>↓ 122<br>↓ 777             |
| Ċ               | 1001                                 | 1001                                              | 1001                             | 1002                               | 1002                        | 1002                             | 1003                             | 1003                         | 1003                          | 1004                      | 1004                       | 1004                              |
|                 | B U 252                              | ■ 485<br>■ 233<br>■ 222                           | A88<br>985<br>997                | A85<br>900<br>252                  | 203<br>222                  | NAA2<br>A85<br>€ 505<br>€ 901    | A85<br>900<br>1212               | A65<br>233<br>222            | A&S<br>555<br>0 971           | A65<br>900<br>102         | A65<br>233<br>222          | A68<br>505<br>101                 |
| Contact Support | 1001<br>433<br>C U 006               | 1001<br>A&S<br>037<br>037                         | 1001<br>AES<br>102<br>004        | 1002<br>Alis<br>433<br>530         | 1002<br>Alasi<br>537<br>630 | 1002<br>Add<br>102<br>102<br>024 | 1003<br>ABS<br>433<br>100<br>200 | 1003<br>Alis<br>557<br>U 470 | 1003<br>Add<br>102<br>U 024   | 1004<br>AEG<br>453<br>256 | 1004<br>Alia<br>397<br>100 | 1004<br>ABS<br>102<br>454         |
|                 | 1001                                 | 1001                                              | 1001                             | 1002                               | 1002                        | 1902                             | 1003                             | 1903                         | 1003                          | 1004                      | 1004                       | 1004                              |
|                 | D 120                                | 235<br>211<br>2215                                | 176<br>176<br>177                | ABS<br>254<br>251<br>250           | 205<br>721                  | ₩445<br>178<br>178<br>178<br>567 | A2G<br>834<br>120                | ₩445<br>235<br>211           | ALG<br>138<br>138<br>137      | ADG<br>851<br>120         | AEG<br>233<br>721          | Ang<br>138<br>138                 |
| AA              | 1001<br>A85<br>176<br>E 137          | 1001<br>ABS<br>450<br>275                         | 1001<br>ADS<br>884<br>482        | 1002<br>ABS<br>2115<br>115<br>1157 | 1002<br>ABS<br>450<br>275   | 1002<br>ABS<br>884<br>482        | 1003<br>ABS<br>785<br>137        | 1003<br>ABS<br>450<br>273    | 1003<br>ABS<br>884<br>482     | 1004<br>A05<br>216<br>117 | 1004<br>ABS<br>450<br>1273 | 1004<br>ADS<br>884<br>482         |
| A               |                                      |                                                   |                                  |                                    |                             |                                  |                                  |                              |                               |                           |                            |                                   |
| S               | F U 681                              | 1001<br>A85<br>110<br>1748                        | 1001<br>A55<br>112<br>155<br>155 | 1002<br>A55<br>112<br>123          | 1002<br>A85<br>710<br>745   | 1002<br>A55<br>112<br>135        | 1003<br>AB5<br>112<br>112<br>681 | 1003<br>A55<br>710<br>1745   | 1003<br>A55<br>112<br>155     | 1004<br>A05<br>182<br>031 | 1004<br>A855<br>213<br>145 | 1004<br>A85<br>112<br>133<br>1355 |
| 4               | 1001<br>A85<br>002<br>01<br>01<br>02 | 1001<br>A85<br>472<br>134                         | 1001<br>A88<br>127<br>RNaseP     | 1002<br>A85<br>922<br>396          | 1002<br>A85<br>472<br>574   | 1002<br>ASS<br>127<br>RNaseP     | 1003<br>A85<br>822<br>196        | 1003<br>A85<br>472<br>534    | 1003<br>A85<br>137<br>RotaseP | 1004<br>A85<br>02<br>105  | 1004<br>A85<br>422<br>536  | 1004<br>A85<br>117<br>PhaseP      |
|                 |                                      |                                                   |                                  |                                    |                             |                                  |                                  |                              | <b>1</b>                      |                           |                            | <b>M</b>                          |
| D               | 1001<br>ABS<br>663<br>H 441          | 1001<br>A85<br>824<br>916                         | NTC<br>ABS<br>RhaseP             | 1002<br>ABS<br>063<br>U 441        | 1002<br>Alas<br>204<br>205  | NTC<br>AES<br>RolaseP            | 1003<br>ABS<br>053<br>H1         | 1003<br>A65<br>024<br>024    | NTC<br>AES<br>RNaseP          | 1004<br>ABS<br>653<br>441 | 1004<br>A60<br>004<br>919  | ABS<br>PrimeP                     |

Start the droplet reading run.

## **Genotyping Data Analysis and Report**


## The QTRACE<sup>®</sup> Analysis System

Import qPCR data by clicking the "Import qPCR Data" button .

Browse to the location of your exported qPCR data file and select it. TRACE Analysis<sup>™</sup> will import the data.

TRACE Analysis<sup>™</sup> will perform a quality analysis on the data and will present the data in the plate view. The image below shows a genotyping result for a standard (left) and multiplexed (right) genotyping plate. There are three quality scores given to genotyping data: 1) positive, 2) negative and 3) atypical. These values are represented in the plate image by three different





Dark green sections represent data scored as truly positive for a sample.

Light blue sections represent data scored as truly negative for a sample.

Red sections represent data scored as atypical for a sample. (Atypical assay results will exclude the assay from consideration as a potentially informative assay for all samples grouped in the analysis).

For more information on the Genotyping Algorithm used by TRACE Analysis<sup>™</sup> Software, go to the <u>Data Analysis Algorithms</u> Section of this manual.

After inspecting the quality of the data, pressing the "Calculate" Calculate button makes TRACE Analysis<sup>™</sup> perform comparative genotyping analysis. It will determine and display markers which are informative for all samples in a group.

TRACE Analysis<sup>™</sup> displays each assay which was informative for a single sample in the group being compared.

TRACE Analysis<sup>™</sup> also displays the chromosomal location of the informative assays, as well as the positive or negative status of the assays for visual inspection.

The report generated from a QTRACE<sup>®</sup> or DigitalTRACE<sup>™</sup> Genotyping experiment may be sorted to provide a custom view of the data.

|         |                           |              |           |                                        |      |      | Eve                  | vori | ment r   | eno  |          |                 |           |     |
|---------|---------------------------|--------------|-----------|----------------------------------------|------|------|----------------------|------|----------|------|----------|-----------------|-----------|-----|
|         |                           |              |           |                                        |      |      |                      | 2611 | internet | epo  |          |                 |           |     |
| cope:   | <ul> <li>Entir</li> </ul> | e experiment |           |                                        |      |      |                      |      |          |      |          | Column          | Order     |     |
|         | O Tran                    | plantation   | Samuel    | Haskell                                |      |      |                      |      |          |      | Sort by: | Informative ~   | Descendin | n · |
|         | Full                      |              |           |                                        |      |      |                      |      |          |      |          | Marker          | Ascending |     |
| Format: |                           |              |           |                                        |      |      |                      |      |          |      | Then by: | Locus           | Ascending | 9   |
|         | O Sum                     | marized      |           |                                        |      |      |                      |      |          |      |          | Informative for |           |     |
|         |                           |              |           |                                        |      |      |                      |      |          |      |          | InfoCq          | 4         |     |
| Save as |                           |              |           |                                        |      |      |                      |      |          |      |          | Delta Cg        | I         |     |
|         |                           |              |           |                                        |      |      |                      |      |          |      |          | Detta Cq        | _         |     |
| 🖌 🗋 🔍   | . 🔍 🛄                     | 8 🛛 🖾        |           |                                        |      |      |                      |      |          |      |          |                 |           |     |
|         |                           |              |           |                                        |      |      |                      |      |          |      |          | _               |           | -   |
|         |                           |              |           |                                        |      |      |                      |      |          |      |          |                 |           |     |
|         |                           | · · ·        | Used Ass  | ioys                                   |      |      |                      |      |          |      |          |                 |           |     |
|         |                           | 1            | Rasary Lo | cus informative for                    |      |      | Recipient 1          |      |          | Cq   |          |                 |           |     |
|         |                           |              |           | 2q Samuel Haskell                      |      | -0.2 |                      | 27,5 |          |      |          |                 |           |     |
|         |                           |              |           | 4g Samuel Haskell<br>7p Samuel Haskell |      | 0.75 | Positive<br>Positive | 28,4 |          | 40,0 |          |                 |           |     |
|         |                           |              |           | 7p Samuel Haskell<br>g Samuel Haskell  |      | 2.26 | Positive             | 30,0 |          | 40,0 |          |                 |           |     |
|         |                           |              |           | Do Mud Haskel                          | 26.5 |      | Negative             | 40.0 |          | 26.9 |          |                 |           |     |
|         |                           | I L          |           |                                        |      | 0.64 |                      |      |          | -    |          |                 |           |     |
|         |                           |              | 145 1     | 7g Mud Haskell                         | 27.2 |      | Negative             | 40,0 | Positive | 27,3 |          |                 |           |     |
|         |                           | I - F        | 854 1     | 20 Mud Haskel                          |      | 0.23 | No. of Co.           | 40,0 | Positive | 27,7 |          |                 |           |     |
|         |                           |              |           | 2g Mud Haskell<br>g Mud Haskell        |      | 0.17 | Negative<br>Negative | 40.0 |          | 25,7 |          |                 |           |     |
|         |                           |              | 469 7     |                                        |      | 0.57 | Negative             | 40,0 |          | 28,1 |          |                 |           |     |
|         |                           |              | 768 1     | Sq Mud Haskell                         |      | 0.75 | Negative             | 40,0 |          | 28,3 |          |                 |           |     |
|         |                           |              |           | Sq Mud Haskel                          |      | 0.79 | Negative             | 40,0 |          | 28,3 |          |                 |           |     |
|         |                           |              |           | Sq Mud Haskell                         |      | 0.9  | Negative             | 40,0 |          | 28,4 |          |                 |           |     |
|         |                           |              |           | Mud Haskel     Mud Haskel              |      | 0.96 | Negative<br>Negative | 40,0 |          | 28,5 |          |                 |           |     |
|         |                           |              | 235 2     |                                        |      | 1.49 | Negative             | 40,0 |          | 29,0 |          |                 |           |     |
|         |                           |              | 137 1     |                                        |      | 1.63 |                      | 40,0 |          | 29,2 |          |                 |           |     |
|         |                           |              | 240 8     |                                        |      |      | Negative             | 40,0 |          | 40,0 |          |                 |           |     |
|         |                           |              |           | 3g None                                | - t- | · .  | Negative             | 40,0 |          | 40,0 |          |                 |           |     |
|         |                           |              |           | p None<br>7p None                      |      |      | Positive<br>Negative | 27,8 |          | 28,4 |          |                 |           |     |
|         |                           |              |           | 7p None                                | 1    | 1    | Negative             | 40,0 |          | 40,0 |          |                 |           |     |
|         |                           |              |           | p None                                 | 1.   |      | Negative             | 40,0 |          | 40,0 |          |                 |           |     |
|         |                           |              |           | g None                                 |      |      | Negative             | 40.0 |          | 40.0 |          |                 |           |     |

## The DigitalTRACE<sup>™</sup> Analysis System

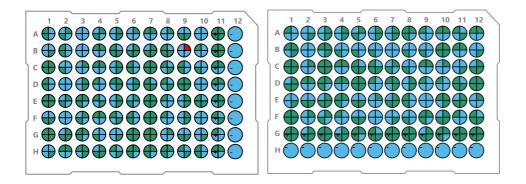
### **Genotyping Data Analysis and Report - QIAcuity**

After the QIAcuity run has finished, check in the QIAcuity Software Suite if the automatic thresholds are correct. Adjust the thresholds manually if needed.

| A1       | 81                | CI         | D1                            | 61              | F1          | G1             | 6 S              |
|----------|-------------------|------------|-------------------------------|-----------------|-------------|----------------|------------------|
|          |                   | · Sauce As |                               | 1.1.1.1.2.5     |             |                |                  |
|          |                   | 和资料和新闻     |                               | a station water |             | and the second |                  |
|          |                   |            |                               | Charles and     |             | 122 1 1 2      |                  |
|          |                   |            | -                             |                 |             |                |                  |
|          |                   |            |                               |                 | 1.000       | 1.041          |                  |
| ust la d | And Street Street |            | and interesting               |                 | di minidati |                | checks with 1992 |
|          |                   |            | whether it is a second of the |                 |             |                |                  |

Select all wells on the plate and analyze per target (not per channel), export data by selecting Export to CSV.

| List | Signalmap Heatmap  | Histogram 1D Scatterplot 2D | Scatterplot Concentrati | on diag | ram          |                              |             |                     |               |                         |               |
|------|--------------------|-----------------------------|-------------------------|---------|--------------|------------------------------|-------------|---------------------|---------------|-------------------------|---------------|
|      |                    |                             |                         |         |              |                              |             | Add to repor        | t 🗌 Show mean | values for replicates ( | Export to CSV |
|      | Sample/NTC/Control | Reaction Mix                | Target                  | IC      | Control type | Concentration *<br>copies/µL | CI<br>(95%) | Partitions<br>valid | positive      | negative                | Threshold     |
|      |                    |                             | d681                    |         | -            | 0.000                        |             | 8191                | 0             | 8191                    | 30.86         |
| A1   | 01 c105 221010     | QIAMix001                   | d971                    | +       |              | 0.372                        | 147.5%      | 8191                | 1             | 8190                    | 53.81         |
|      |                    | - dominant                  | d113                    |         |              | 0.000                        |             | 8191                | 0             | 8191                    | 20.66         |
|      |                    |                             | d597                    |         |              | 149.4                        | 9.9%        | 8191                | 392           | 7799                    | 24.86         |
|      |                    |                             | d777                    |         |              | 0.376                        | 147.5%      | 8271                | 1             | 8270                    | 21.93         |
| A2   | 01 c105 221010     | QIAMix002                   | d396                    |         |              | 0.000                        |             | 8271                | 0             | 8271                    | 34.68         |
|      | N                  | An damagar                  | d892                    |         |              | 0.000                        |             | 8271                | 0             | 8271                    | 21.93         |
|      |                    |                             | d333                    |         |              | 180.2                        | 9.1%        | 8271                | 466           | 7805                    | 24.23         |
|      |                    |                             |                         |         |              |                              |             |                     |               |                         | cla           |


Import dPCR data to TRACE Analysis<sup>™</sup> Software by clicking the "Import PCR Data" <sup>™</sup> button. Browse to the location of your exported dPCR data file and select it.

TRACE Analysis<sup>™</sup> Software will perform a quality analysis on the data and will present the data in the plate view.

There are three quality scores given to genotyping data: 1) positive (green), 2) negative (blue) and 3) atypical (red).

These values are represented accordingly in the plate image by three different colors:



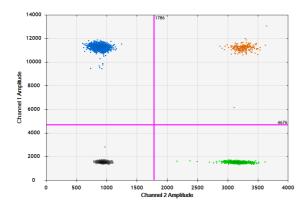


An atypical assay results will exclude the assay from consideration as a potentially informative assay for all samples grouped in the analysis.

After inspecting the quality of the data, pressing the "Calculate" <sup>Calculate</sup> button makes TRACE Analysis™ perform comparative genotyping analysis. It will determine and display markers which are informative for all samples in a group.

Press the "Report" Report... button to generate the Genotyping Report

TRACE Analysis<sup>™</sup> Software displays each assay which was informative for a single sample in the group being compared, and it also displays the chromosomal location of the informative assays, as well as the positive or negative status of the assays for visual inspection.


The report generated from a TRACE Analysis<sup>™</sup> Genotyping experiment may be sorted to provide a custom view of the data.

| ReportWindow |               |                               |                   |                      |      |                        |          |                      |                      |      |         |              |                       |                                       |        | -          |         | 2    |
|--------------|---------------|-------------------------------|-------------------|----------------------|------|------------------------|----------|----------------------|----------------------|------|---------|--------------|-----------------------|---------------------------------------|--------|------------|---------|------|
|              |               |                               |                   |                      |      | Exper                  | ime      | nt re                | port                 |      |         |              |                       |                                       |        |            |         |      |
| Kope:        | Entire experi |                               |                   |                      |      |                        |          | _                    |                      |      |         |              |                       |                                       | Colum  |            | Order   | _    |
|              |               |                               |                   |                      |      |                        |          |                      |                      |      |         |              |                       |                                       |        | -          |         |      |
| 0            | Transplantati | on Tom                        |                   |                      |      |                        |          |                      |                      |      |         |              |                       | Sort by:                              | Locus  | w          | Descend | dine |
| Format:      | Full          |                               |                   |                      |      |                        |          |                      |                      |      |         |              |                       | Then by:                              | Marke  | r          | Ascendi | na   |
|              | Summarized    |                               |                   |                      |      |                        |          |                      |                      |      |         |              |                       | · · · · · · · · · · · · · · · · · · · | Locus  |            |         |      |
| <u> </u>     | Summarized    |                               |                   |                      |      |                        |          |                      |                      |      |         |              |                       |                                       | Inform | native for | 1       |      |
| -            |               |                               |                   |                      |      |                        |          |                      |                      |      |         |              |                       |                                       | InfoC  | 9          |         |      |
| Save as      |               |                               |                   |                      |      |                        |          |                      |                      |      |         |              |                       |                                       | Delta  | Cq         |         |      |
| 0.0.0        |               |                               |                   |                      |      |                        |          |                      |                      |      |         |              |                       |                                       |        | -          |         |      |
| 015 51       |               | Recipient                     |                   |                      | Don  |                        |          |                      |                      |      |         |              |                       |                                       |        | _          |         | -    |
|              |               | Name:                         | Tom               |                      | Nam  |                        | Ale      |                      |                      |      |         |              |                       |                                       |        |            |         |      |
|              |               | ID:                           | 45458             |                      | ID:  |                        |          | 4654                 |                      |      |         |              |                       |                                       |        |            |         |      |
|              |               | Gender:                       | Unknown           |                      | Gen  | der                    |          | known                |                      |      |         |              |                       |                                       |        |            |         |      |
|              |               | Disease ty                    |                   |                      |      | of birth:              |          |                      |                      |      |         |              |                       |                                       |        |            |         |      |
|              |               | Date of bi                    |                   |                      | Corr | ments:                 | -        |                      |                      |      |         |              |                       |                                       |        |            |         |      |
|              |               | Transplant                    |                   |                      |      |                        |          |                      |                      |      |         |              |                       |                                       |        |            |         |      |
|              |               | date:                         |                   |                      |      |                        |          |                      |                      |      |         |              |                       |                                       |        |            |         |      |
|              |               | Comment                       | F: -              |                      |      |                        |          |                      |                      |      |         |              |                       |                                       |        |            |         |      |
|              |               | Used Assoy<br>Assay Locu      | s Informative for | Recipient            | ow   | Concen- P<br>tration t |          | Partition<br>(valid) | Donor 1              | aw   | Concen- |              | Partitions<br>(valid) |                                       |        |            |         |      |
|              |               | d721 Xq                       | None              | Positive             | 0.9  | 163,40                 | 424      |                      | Positive             | 1 10 | 221.70  | 545          | (want)<br>8207        |                                       |        |            |         |      |
|              |               | d333 9q                       |                   | Positive             |      | 180,20                 | 466      | 8271                 | Negative             | 0,0  |         | 0            |                       |                                       |        |            |         |      |
|              |               | 6472 99                       | Tom               | Positive             |      | 141,90                 | 369      | \$247                | Negative             | 0,0  |         | 2            | 8240                  |                                       |        |            |         |      |
|              |               | d113 8q<br>d252 8q            | None              | Negative             | 0,0  |                        | 0        |                      | Negative<br>Negative | 0,0  |         | 0            |                       |                                       |        |            |         |      |
|              |               | d252 Bq<br>d936 Bp            | None              | Negative<br>Negative | 0,0  |                        | 0        | 8224                 | Negative             | 0.0  |         | 0            | 8256                  |                                       |        |            |         |      |
|              |               | d198 7q                       | Tom               | Positive             |      | 187,80                 | 482      | \$260                | Negative             | 0,0  |         | 0            |                       |                                       |        |            |         |      |
|              |               | d990 7q                       | Tom               | Positive             | 1,1  |                        | 487      | \$239                | Negative             | 0,0  |         | 0            | 8283                  |                                       |        |            |         |      |
|              |               | d567 7p<br>d892 6q            | None              | Positive<br>Negative | 1,1  | 0.00                   | 500<br>0 | 8259<br>8271         | Positive<br>Negative | 1,1  |         | 623          | 8266                  |                                       |        |            |         |      |
|              |               | d971 6g                       | Alex              | Negative             | 0.0  |                        | 1        | 8191                 | Positive             | 1.0  |         | \$76         | 8224                  |                                       |        |            |         |      |
|              |               | d222 6p                       | Tom               | Positive             | 1,0  | 172,20                 | 443      | \$242                | Negative             | 0,0  | 0,00    | 0            | 8283                  |                                       |        |            |         |      |
|              |               | d795 5q                       | None              | Negative             | 0,0  |                        | 1        | 8205                 | Negative             | 0,0  |         | 3            | 8275                  |                                       |        |            |         |      |
|              |               | d176 5p<br>d694 4p            | None<br>Alex      | Positive<br>Negative | 0,8  | 141,70                 | 369      | 8277<br>8214         | Positive<br>Positive | 0,9  | 205,90  | \$10<br>1193 | 8204<br>8253          |                                       |        |            |         |      |
|              |               | d120 20                       | Tom               | Positive             |      | 290,10                 | 976      | 8224                 | Negative             | 0.0  |         | 1193         | 8253                  |                                       |        |            |         |      |
|              |               |                               | Alex              | Negative             | 0,0  |                        | 0        | 8259                 | Positive             |      | 233,50  | \$76         | 8266                  |                                       |        |            |         |      |
|              |               | d574 2g                       |                   |                      |      |                        |          |                      |                      |      |         |              |                       |                                       |        |            |         |      |
|              |               | d574 2q<br>d678 2q<br>d585 2p | Alex              | Negative<br>Positive | 0,0  |                        | 0 460    |                      | Positive<br>Negative | 1,1  | 245,50  | 596          | 8234<br>8256          |                                       |        |            |         |      |

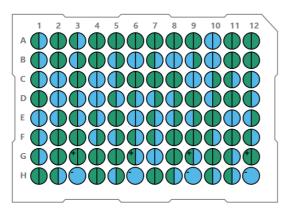
To create an anonymized report, go to the <u>Anonymized Reporting</u> Section.

### **Genotyping Data Analysis and Report - Biorad**

After the reading process has finished, check in the QuantaSoft Software if the automatic thresholds are correct. Adjust the thresholds manually if needed.



Select all wells on the plate and export data by selecting Export CSV.


Import dPCR data to TRACE Analysis<sup>™</sup> Software by clicking the "Import PCR Data" <sup>™</sup> button. Browse to the location of your exported dPCR data file and select it.

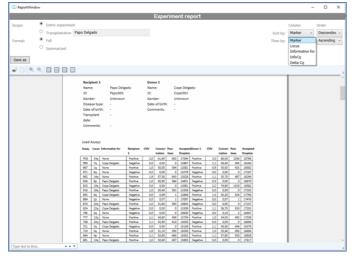
TRACE Analysis<sup>™</sup> Software will perform a quality analysis on the data and will present the data in the plate view.

There are three quality scores given to genotyping data: 1) positive (green), 2) negative (blue) and 3) atypical (red).

These values are represented accordingly in the plate image by three different colors:

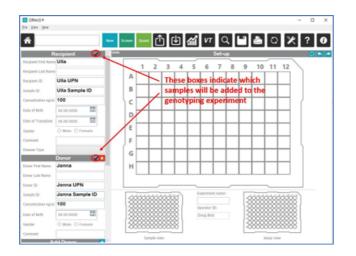




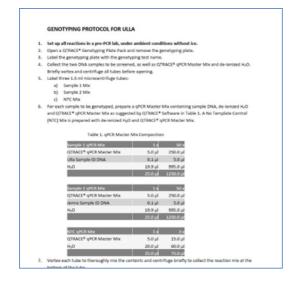

An atypical assay results will exclude the assay from consideration as a potentially informative assay for all samples grouped in the analysis.

After inspecting the quality of the data, pressing the "Calculate" Calculate button makes TRACE Analysis™ perform comparative genotyping analysis. It will determine and display markers which are informative for all samples in a group.

Press the "Report" Report... button to generate the Genotyping Report


TRACE Analysis<sup>™</sup> Software displays each assay which was informative for a single sample in the group being compared, and it also displays the chromosomal location of the informative assays, as well as the positive or negative status of the assays for visual inspection.

The report generated from a TRACE Analysis<sup>™</sup> Genotyping experiment may be sorted to provide a custom view of the data.




## **Multiple Donor Analysis Using QTRACE Plates**

Enter Recipient and Donor 1 Sample Information, as you would normally. Note: the check boxes always indicate which samples will be added to the experiment.



Following the normal setup and export steps, TRACE Analysis<sup>™</sup> will make a protocol for typing both samples on one plate.



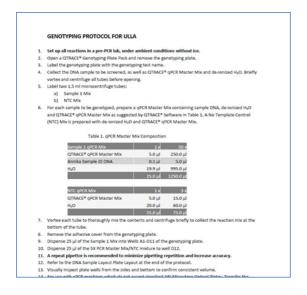
When the data is imported and approved,



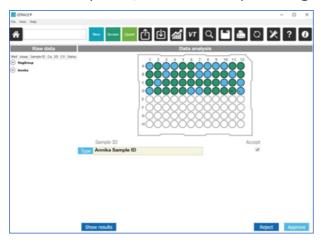
TRACE Analysis<sup>™</sup> generates a report for the first pair.

|                                                                                                                                                                                                                    |                                                                                                                                                                                                                 |                                                              |           | Chi                                                                                                                                                                              | meri    | sm G                                                                                                                                                                | enotypin                                                                                                                                                                                                                                     | g - F                                                                                                                                        | ull Repo                                                                                                                                                                                                                                                 | ort                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
|                                                                                                                                                                                                                    |                                                                                                                                                                                                                 |                                                              |           |                                                                                                                                                                                  |         |                                                                                                                                                                     |                                                                                                                                                                                                                                              |                                                                                                                                              |                                                                                                                                                                                                                                                          |                                                              |
| Experin                                                                                                                                                                                                            | nent name                                                                                                                                                                                                       | e:                                                           | Recipient | and Do                                                                                                                                                                           | nor 1 G | ienotyp                                                                                                                                                             | ing                                                                                                                                                                                                                                          |                                                                                                                                              |                                                                                                                                                                                                                                                          |                                                              |
| Experin                                                                                                                                                                                                            | nent date:                                                                                                                                                                                                      |                                                              | 24 March  | 2017                                                                                                                                                                             |         |                                                                                                                                                                     |                                                                                                                                                                                                                                              |                                                                                                                                              |                                                                                                                                                                                                                                                          |                                                              |
| Data fo                                                                                                                                                                                                            | Ider:                                                                                                                                                                                                           |                                                              | C:\Users\ | Doug\D                                                                                                                                                                           | esktop' | QTRAC                                                                                                                                                               | E\Transplan                                                                                                                                                                                                                                  | tation                                                                                                                                       |                                                                                                                                                                                                                                                          |                                                              |
| Operati                                                                                                                                                                                                            | or name:                                                                                                                                                                                                        |                                                              | Doug      |                                                                                                                                                                                  |         |                                                                                                                                                                     |                                                                                                                                                                                                                                              |                                                                                                                                              |                                                                                                                                                                                                                                                          |                                                              |
| Recipie                                                                                                                                                                                                            | nt                                                                                                                                                                                                              |                                                              |           |                                                                                                                                                                                  | Donor   |                                                                                                                                                                     |                                                                                                                                                                                                                                              |                                                                                                                                              |                                                                                                                                                                                                                                                          |                                                              |
| Name:                                                                                                                                                                                                              |                                                                                                                                                                                                                 | Ulla                                                         |           |                                                                                                                                                                                  | Name:   | -                                                                                                                                                                   | Jonna                                                                                                                                                                                                                                        |                                                                                                                                              |                                                                                                                                                                                                                                                          |                                                              |
| ID:                                                                                                                                                                                                                |                                                                                                                                                                                                                 | Ulla UF                                                      | N         |                                                                                                                                                                                  | ID:     |                                                                                                                                                                     | Jonna UP                                                                                                                                                                                                                                     | N                                                                                                                                            |                                                                                                                                                                                                                                                          |                                                              |
| Gender                                                                                                                                                                                                             |                                                                                                                                                                                                                 | Female                                                       |           |                                                                                                                                                                                  | Gende   | -                                                                                                                                                                   | Female                                                                                                                                                                                                                                       |                                                                                                                                              |                                                                                                                                                                                                                                                          |                                                              |
| Disease                                                                                                                                                                                                            |                                                                                                                                                                                                                 | - subarc                                                     |           |                                                                                                                                                                                  | Comm    |                                                                                                                                                                     | remare                                                                                                                                                                                                                                       |                                                                                                                                              |                                                                                                                                                                                                                                                          |                                                              |
| Date of                                                                                                                                                                                                            |                                                                                                                                                                                                                 | -<br>10 July                                                 | 2017      |                                                                                                                                                                                  | comm    | ensi                                                                                                                                                                |                                                                                                                                                                                                                                              |                                                                                                                                              |                                                                                                                                                                                                                                                          |                                                              |
|                                                                                                                                                                                                                    |                                                                                                                                                                                                                 |                                                              |           |                                                                                                                                                                                  |         |                                                                                                                                                                     |                                                                                                                                                                                                                                              |                                                                                                                                              |                                                                                                                                                                                                                                                          |                                                              |
| Comme                                                                                                                                                                                                              | lant date:                                                                                                                                                                                                      | 10 July                                                      | 201/      |                                                                                                                                                                                  |         |                                                                                                                                                                     |                                                                                                                                                                                                                                              |                                                                                                                                              |                                                                                                                                                                                                                                                          |                                                              |
| Used A                                                                                                                                                                                                             |                                                                                                                                                                                                                 | Informat                                                     | ine for   | halas a                                                                                                                                                                          |         | Ma                                                                                                                                                                  | Recipient                                                                                                                                                                                                                                    | 0                                                                                                                                            | Over 1                                                                                                                                                                                                                                                   | 64                                                           |
| Assay 1                                                                                                                                                                                                            | Locus                                                                                                                                                                                                           | Informat                                                     | ive for   | InfoCq                                                                                                                                                                           |         | ACe                                                                                                                                                                 | Recipient                                                                                                                                                                                                                                    | _                                                                                                                                            | (Donor 1                                                                                                                                                                                                                                                 | Cq                                                           |
| Assay 1<br>548                                                                                                                                                                                                     | Locus<br>Χρ                                                                                                                                                                                                     | Ulla<br>Ulla                                                 | ive for   | InfoCq<br>26.64<br>26.89                                                                                                                                                         |         | 0<br>0.25                                                                                                                                                           | Recipient<br>Positive<br>Positive                                                                                                                                                                                                            | 26.6                                                                                                                                         | Negative                                                                                                                                                                                                                                                 | 6q<br>40.0                                                   |
| 548<br>148                                                                                                                                                                                                         | Locus                                                                                                                                                                                                           | Ulla                                                         | ive for   | 26.64                                                                                                                                                                            |         | 0                                                                                                                                                                   | Positive                                                                                                                                                                                                                                     | 26.0                                                                                                                                         |                                                                                                                                                                                                                                                          | 40.0                                                         |
| Assay 548<br>148<br>601                                                                                                                                                                                            | Xp<br>17q                                                                                                                                                                                                       | Ulla                                                         | ive for   | 26.64                                                                                                                                                                            |         | 0                                                                                                                                                                   | Positive<br>Positive                                                                                                                                                                                                                         | 26.0<br>26.1<br>27.1                                                                                                                         | Negative                                                                                                                                                                                                                                                 | 40.0                                                         |
| Assay 548<br>148<br>601<br>504<br>408                                                                                                                                                                              | Xp<br>17q<br>14q<br>17p<br>2q                                                                                                                                                                                   | Ulla<br>Ulla<br>Ulla<br>Ulla<br>Ulla                         | ive for   | 26.64<br>26.89<br>27.07<br>27.14<br>27.19                                                                                                                                        |         | 0<br>0.25<br>0.44<br>0.51<br>0.56                                                                                                                                   | Positive<br>Positive<br>Positive<br>Positive<br>Positive                                                                                                                                                                                     | 26.0<br>26.1<br>27.1<br>27.1<br>27.1<br>27.1                                                                                                 | Negative<br>Negative<br>Negative<br>Negative<br>Negative                                                                                                                                                                                                 | 40.0<br>40.0<br>40.0<br>40.0<br>40.0                         |
| Assay 1<br>548<br>148<br>601<br>504<br>408<br>948                                                                                                                                                                  | tocus<br>Xp<br>17q<br>14q<br>17p<br>2q<br>1p                                                                                                                                                                    | Ulla<br>Ulla<br>Ulla<br>Ulla<br>Ulla<br>Ulla                 | ive for   | 26.64<br>26.89<br>27.07<br>27.14<br>27.19<br>27.29                                                                                                                               |         | 0<br>0.25<br>0.44<br>0.51<br>0.56<br>0.66                                                                                                                           | Positive<br>Positive<br>Positive<br>Positive<br>Positive                                                                                                                                                                                     | 26.0<br>26.1<br>27.1<br>27.1<br>27.1<br>27.1                                                                                                 | Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative                                                                                                                                                                                     | 40.0<br>40.0<br>40.0<br>40.0<br>40.0<br>40.0                 |
| Assay 1<br>548<br>148<br>601<br>504<br>408<br>948<br>425                                                                                                                                                           | tecus<br>Xp<br>17q<br>14q<br>17p<br>2q<br>1p<br>6q                                                                                                                                                              | Ulla<br>Ulla<br>Ulla<br>Ulla<br>Ulla<br>Ulla                 | ive for   | 26.64<br>26.89<br>27.07<br>27.14<br>27.19<br>27.29<br>27.32                                                                                                                      |         | 0<br>0.25<br>0.44<br>0.51<br>0.56<br>0.66<br>0.69                                                                                                                   | Positive<br>Positive<br>Positive<br>Positive<br>Positive<br>Positive                                                                                                                                                                         | 26.0<br>26.1<br>27.1<br>27.1<br>27.1<br>27.1<br>27.1                                                                                         | Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative                                                                                                                                                                                     | 40.0<br>40.0<br>40.0<br>40.0<br>40.0<br>40.0<br>40.0         |
| Assay 1<br>548<br>148<br>601<br>504<br>405<br>948<br>425<br>634                                                                                                                                                    | tecus<br>Xp<br>17q<br>14q<br>17p<br>2q<br>1p<br>6q<br>11q                                                                                                                                                       | Ulla<br>Ulla<br>Ulla<br>Ulla<br>Ulla<br>Ulla<br>Ulla         | ive for   | 26.64<br>26.89<br>27.07<br>27.14<br>27.19<br>27.29<br>27.32<br>27.32                                                                                                             |         | 0<br>0.25<br>0.44<br>0.51<br>0.56<br>0.66<br>0.69<br>0.78                                                                                                           | Positive<br>Positive<br>Positive<br>Positive<br>Positive<br>Positive<br>Positive                                                                                                                                                             | 26.4<br>26.1<br>27.1<br>27.1<br>27.1<br>27.1<br>27.1<br>27.1<br>27.1                                                                         | Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative                                                                                                                                                             | 40.0<br>40.0<br>40.0<br>40.0<br>40.0<br>40.0<br>40.0<br>40.0 |
| Assay 548<br>548<br>601<br>504<br>408<br>548<br>425<br>634<br>784                                                                                                                                                  | xp<br>17q<br>14q<br>17p<br>2q<br>1p<br>6q<br>11q<br>10q                                                                                                                                                         | Ulla<br>Ulla<br>Ulla<br>Ulla<br>Ulla<br>Ulla<br>Ulla<br>Ulla | ive for   | 26.64<br>26.89<br>27.07<br>27.14<br>27.19<br>27.29<br>27.32<br>27.32<br>27.41<br>27.57                                                                                           |         | 0<br>0.25<br>0.44<br>0.51<br>0.56<br>0.66<br>0.69<br>0.78<br>0.78<br>0.94                                                                                           | Positive<br>Positive<br>Positive<br>Positive<br>Positive<br>Positive                                                                                                                                                                         | 26.4<br>26.1<br>27.1<br>27.1<br>27.1<br>27.1<br>27.1<br>27.1<br>27.1<br>27                                                                   | Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative                                                                                                                                                 | 40.0<br>40.0<br>40.0<br>40.0<br>40.0<br>40.0<br>40.0         |
| Assay 4<br>548<br>148<br>601<br>504<br>408<br>948<br>425<br>634<br>784<br>240                                                                                                                                      | tecus<br>Xp<br>17q<br>14q<br>17p<br>2q<br>1p<br>6q<br>11q                                                                                                                                                       | Ulla<br>Ulla<br>Ulla<br>Ulla<br>Ulla<br>Ulla<br>Ulla         | ive for   | 26.64<br>26.89<br>27.07<br>27.14<br>27.19<br>27.29<br>27.32<br>27.32                                                                                                             |         | 0<br>0.25<br>0.44<br>0.51<br>0.56<br>0.66<br>0.69<br>0.78                                                                                                           | Positive<br>Positive<br>Positive<br>Positive<br>Positive<br>Positive<br>Positive<br>Positive<br>Positive                                                                                                                                     | 26.0<br>26.1<br>27.1<br>27.1<br>27.1<br>27.1<br>27.1<br>27.1<br>27.1<br>27                                                                   | Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative                                                                                                                                                             | 40.0<br>40.0<br>40.0<br>40.0<br>40.0<br>40.0<br>40.0<br>40.0 |
| Assay 1<br>548<br>548<br>601<br>504<br>405<br>948<br>425<br>634<br>784<br>240<br>768                                                                                                                               | Xp           17q           14q           17p           2q           1p           6q           11q           10q           8q                                                                                    | Ulla<br>Ulla<br>Ulla<br>Ulla<br>Ulla<br>Ulla<br>Ulla<br>Ulla | ive for   | 26.64<br>26.89<br>27.07<br>27.14<br>27.19<br>27.29<br>27.32<br>27.32<br>27.41<br>27.57<br>27.62                                                                                  |         | 0<br>0.25<br>0.44<br>0.51<br>0.56<br>0.66<br>0.69<br>0.78<br>0.94<br>0.39                                                                                           | Positive<br>Positive<br>Positive<br>Positive<br>Positive<br>Positive<br>Positive<br>Positive<br>Positive<br>Positive                                                                                                                         | 26.4<br>26.1<br>27.1<br>27.1<br>27.1<br>27.1<br>27.1<br>27.1<br>27.4<br>27.4<br>27.4<br>27.4<br>27.4<br>27.4<br>27.4<br>27.4                 | Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative                                                                                                                                     | 40.0<br>40.0<br>40.0<br>40.0<br>40.0<br>40.0<br>40.0<br>40.0 |
| Assay 1<br>548<br>148<br>601<br>504<br>408<br>948<br>425<br>634<br>425<br>634<br>240<br>768<br>356<br>515                                                                                                          | tocus<br>xp<br>17q<br>14q<br>17p<br>2q<br>1p<br>6q<br>11q<br>10q<br>8q<br>18q<br>18q<br>18q<br>18q                                                                                                              | Ulla<br>Ulla<br>Ulla<br>Ulla<br>Ulla<br>Ulla<br>Ulla<br>Ulla | ive for   | 26.64<br>26.89<br>27.07<br>27.14<br>27.19<br>27.32<br>27.32<br>27.57<br>27.62<br>28.19<br>29.15<br>25.09                                                                         |         | 0<br>0.25<br>0.44<br>0.51<br>0.56<br>0.66<br>0.69<br>0.78<br>0.54<br>0.59<br>0.78<br>0.54<br>0.59<br>1.56<br>2.52<br>-0.7                                           | Positive<br>Positive<br>Positive<br>Positive<br>Positive<br>Positive<br>Positive<br>Positive<br>Positive<br>Positive<br>Positive<br>Positive<br>Positive<br>Positive<br>Negative<br>Negative                                                 | 26.4<br>26.1<br>27.1<br>27.1<br>27.1<br>27.1<br>27.1<br>27.1<br>27.1<br>27                                                                   | Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative                                                                                     | 40.0<br>40.0<br>40.0<br>40.0<br>40.0<br>40.0<br>40.0<br>40.0 |
| Assay 1<br>548<br>148<br>601<br>504<br>408<br>948<br>425<br>634<br>425<br>634<br>784<br>240<br>768<br>356<br>519<br>520                                                                                            | tocus<br>xp<br>17q<br>17q<br>14q<br>17p<br>6q<br>11q<br>10q<br>8q<br>18q<br>20q<br>20q                                                                                                                          | Ulla<br>Ulla<br>Ulla<br>Ulla<br>Ulla<br>Ulla<br>Ulla<br>Ulla | ive for   | 26.64<br>26.89<br>27.07<br>27.14<br>27.19<br>27.29<br>27.32<br>27.32<br>27.41<br>27.57<br>27.62<br>28.19<br>29.15<br>29.15<br>25.09<br>25.29                                     |         | 0<br>0.25<br>0.44<br>0.51<br>0.56<br>0.66<br>0.69<br>0.78<br>0.54<br>0.59<br>1.56<br>2.52<br>-0.7<br>-0.51                                                          | Positive<br>Positive<br>Positive<br>Positive<br>Positive<br>Positive<br>Positive<br>Positive<br>Positive<br>Positive<br>Positive<br>Positive<br>Positive<br>Negative<br>Negative                                                             | 26.4<br>26.1<br>27.1<br>27.1<br>27.1<br>27.1<br>27.1<br>27.1<br>27.4<br>27.4<br>27.4<br>27.4<br>27.4<br>28.1<br>29.1<br>29.1<br>40.0<br>40.0 | Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative                         | 40.0<br>40.0<br>40.0<br>40.0<br>40.0<br>40.0<br>40.0<br>40.0 |
| Assay 1<br>548<br>148<br>601<br>504<br>408<br>948<br>425<br>634<br>425<br>634<br>240<br>784<br>356<br>519<br>520<br>226                                                                                            | totus<br>xp<br>17q<br>17q<br>14q<br>17p<br>2q<br>1p<br>6q<br>11q<br>10q<br>8q<br>18q<br>18q<br>18q<br>6q<br>6q<br>6q<br>6q<br>6q<br>6q<br>6q<br>6q<br>6q<br>6                                                   | Ulla<br>Ulla<br>Ulla<br>Ulla<br>Ulla<br>Ulla<br>Ulla<br>Ulla | ive for   | 26.64<br>26.89<br>27.07<br>27.14<br>27.19<br>27.29<br>27.32<br>27.41<br>27.57<br>27.62<br>28.19<br>29.15<br>25.09<br>25.29<br>25.77                                              |         | 0<br>0.25<br>0.44<br>0.51<br>0.56<br>0.66<br>0.69<br>0.78<br>0.94<br>0.99<br>1.56<br>2.52<br>-0.7<br>-0.51<br>-0.02                                                 | Positive<br>Positive<br>Positive<br>Positive<br>Positive<br>Positive<br>Positive<br>Positive<br>Positive<br>Positive<br>Positive<br>Positive<br>Nagative<br>Nagative                                                                         | 26.4<br>26.1<br>27.1<br>27.1<br>27.1<br>27.1<br>27.1<br>27.4<br>27.4<br>27.4<br>27.4<br>27.4<br>27.4<br>27.4<br>27.4                         | Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Positive<br>Positive                                                                                                 | 40.0<br>40.0<br>40.0<br>40.0<br>40.0<br>40.0<br>40.0<br>40.0 |
| Assay 1<br>548<br>148<br>601<br>504<br>405<br>948<br>425<br>634<br>240<br>768<br>356<br>515<br>515<br>520<br>326<br>721                                                                                            | totus<br>xp<br>17q<br>14q<br>17p<br>2q<br>1p<br>6q<br>11q<br>10q<br>8q<br>18q<br>18q<br>18q<br>20q<br>6q<br>20q<br>6q<br>23q                                                                                    | Ulla<br>Ulla<br>Ulla<br>Ulla<br>Ulla<br>Ulla<br>Ulla<br>Ulla | ive for   | 28.64<br>26.89<br>27.07<br>27.14<br>27.19<br>27.29<br>27.32<br>27.32<br>27.32<br>27.41<br>27.57<br>27.62<br>28.19<br>29.15<br>25.09<br>25.29<br>25.77<br>26.27                   |         | 0<br>0.25<br>0.44<br>0.51<br>0.56<br>0.66<br>0.69<br>0.78<br>0.99<br>1.56<br>2.52<br>-0.7<br>-0.51<br>-0.02<br>0.48                                                 | Positive<br>Positive<br>Positive<br>Positive<br>Positive<br>Positive<br>Positive<br>Positive<br>Positive<br>Positive<br>Positive<br>Negative<br>Negative<br>Negative                                                                         | 264<br>261<br>273<br>273<br>273<br>273<br>273<br>273<br>274<br>274<br>274<br>274<br>283<br>293<br>400<br>400<br>400<br>400                   | Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Positive<br>Positive<br>Positive                                                                         | 40.0<br>40.0<br>40.0<br>40.0<br>40.0<br>40.0<br>40.0<br>40.0 |
| Assay 1<br>548<br>148<br>601<br>504<br>405<br>948<br>425<br>634<br>425<br>634<br>280<br>768<br>356<br>515<br>515<br>515<br>520<br>126<br>721<br>819                                                                | torus<br>Xp<br>17q<br>14q<br>17p<br>2q<br>1p<br>6q<br>11q<br>10q<br>10q<br>10q<br>10q<br>20q<br>20q<br>20q<br>20q<br>20q<br>20q<br>21q<br>14q                                                                   | Ulla<br>Ulla<br>Ulla<br>Ulla<br>Ulla<br>Ulla<br>Ulla<br>Ulla | ive for   | 28.64<br>26.89<br>27.07<br>27.14<br>27.19<br>27.29<br>27.32<br>27.32<br>27.32<br>27.41<br>27.57<br>27.62<br>28.19<br>29.15<br>25.09<br>25.29<br>25.29<br>25.77<br>26.27<br>26.59 |         | 0<br>0.25<br>0.44<br>0.51<br>0.56<br>0.66<br>0.69<br>0.78<br>0.94<br>0.94<br>0.99<br>1.56<br>2.52<br>-0.7<br>-0.51<br>-0.02<br>0.48<br>0.79                         | Positive<br>Positive<br>Positive<br>Positive<br>Positive<br>Positive<br>Positive<br>Positive<br>Positive<br>Positive<br>Negative<br>Negative<br>Negative<br>Negative                                                                         | 26.6<br>27.3<br>27.3<br>27.3<br>27.3<br>27.3<br>27.3<br>27.4<br>27.4<br>28.2<br>29.3<br>40.0<br>40.0<br>40.0<br>40.0<br>40.0                 | Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Positive<br>Positive<br>Positive                                                 | 40.0<br>40.0<br>40.0<br>40.0<br>40.0<br>40.0<br>40.0<br>40.0 |
| Assay 1<br>548<br>148<br>601<br>504<br>408<br>348<br>425<br>634<br>284<br>784<br>284<br>784<br>284<br>784<br>286<br>515<br>520<br>326<br>515<br>520<br>326<br>515<br>520<br>326<br>515<br>520<br>326<br>523<br>326 | terus<br>Xp<br>17q<br>24<br>17p<br>24<br>17p<br>64<br>17p<br>64<br>18q<br>18q<br>18q<br>18q<br>20q<br>64<br>20q<br>64<br>20q<br>20q<br>214<br>214<br>20q<br>20q<br>214<br>214<br>20q                            | Ulla<br>Ulla<br>Ulla<br>Ulla<br>Ulla<br>Ulla<br>Ulla<br>Ulla | live for  | 26.64<br>26.89<br>27.07<br>27.14<br>27.19<br>27.32<br>27.32<br>27.41<br>27.57<br>27.62<br>28.19<br>29.15<br>25.29<br>25.29<br>25.29<br>25.29<br>25.59<br>25.59<br>26.68          |         | 0<br>0.25<br>0.44<br>0.51<br>0.56<br>0.66<br>0.69<br>0.78<br>0.99<br>1.56<br>0.99<br>1.56<br>2.52<br>-0.7<br>-0.51<br>-0.02<br>0.48<br>0.79<br>0.88                 | Positive<br>Positive<br>Positive<br>Positive<br>Positive<br>Positive<br>Positive<br>Positive<br>Positive<br>Positive<br>Positive<br>Positive<br>Positive<br>Positive<br>Positive<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative | 26.6<br>26.5<br>27.7<br>27.7<br>27.7<br>27.7<br>27.7<br>27.7<br>27.7<br>27                                                                   | Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Positive<br>Positive<br>Positive<br>Positive<br>Positive                                                             | 40.0<br>40.0<br>40.0<br>40.0<br>40.0<br>40.0<br>40.0<br>40.0 |
| Assay 1<br>548<br>548<br>601<br>504<br>408<br>948<br>425<br>634<br>784<br>240<br>768<br>356<br>515<br>520<br>326<br>520<br>326<br>723<br>835<br>803<br>748                                                         | torus<br>Xp<br>17q<br>14q<br>17p<br>2q<br>1p<br>6q<br>11q<br>10q<br>10q<br>10q<br>10q<br>20q<br>20q<br>20q<br>20q<br>20q<br>20q<br>21q<br>14q                                                                   | Ulla<br>Ulla<br>Ulla<br>Ulla<br>Ulla<br>Ulla<br>Ulla<br>Ulla | live for  | 28.64<br>26.89<br>27.07<br>27.14<br>27.19<br>27.29<br>27.32<br>27.32<br>27.32<br>27.41<br>27.57<br>27.62<br>28.19<br>29.15<br>25.09<br>25.29<br>25.29<br>25.77<br>26.27<br>26.59 |         | 0<br>0.25<br>0.44<br>0.51<br>0.56<br>0.66<br>0.69<br>0.78<br>0.94<br>0.94<br>0.99<br>1.56<br>2.52<br>-0.7<br>-0.51<br>-0.02<br>0.48<br>0.79                         | Positive<br>Positive<br>Positive<br>Positive<br>Positive<br>Positive<br>Positive<br>Positive<br>Positive<br>Positive<br>Negative<br>Negative<br>Negative<br>Negative                                                                         | 26.6<br>26.5<br>27.7<br>27.7<br>27.7<br>27.7<br>27.7<br>27.7<br>27.7<br>27                                                                   | Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Positive<br>Positive<br>Positive                                                 | 40.0<br>40.0<br>40.0<br>40.0<br>40.0<br>40.0<br>40.0<br>40.0 |
| Assay<br>548<br>148<br>600<br>504<br>408<br>948<br>425<br>948<br>425<br>948<br>425<br>524<br>784<br>240<br>784<br>240<br>768<br>356<br>515<br>515<br>515<br>515<br>515<br>515<br>515<br>515<br>515<br>5            | terus<br>Xp<br>17q<br>14q<br>17p<br>2q<br>1p<br>2q<br>1p<br>6q<br>11q<br>10q<br>8q<br>18q<br>20q<br>20q<br>20q<br>20q<br>20q<br>21q<br>21q<br>20q<br>20q<br>20q<br>20q<br>20q<br>20q<br>20q<br>20q<br>20q<br>20 | Ulta<br>Ulta<br>Ulta<br>Ulta<br>Ulta<br>Ulta<br>Ulta<br>Ulta | ive for   | 26.64<br>26.89<br>27.07<br>27.14<br>27.19<br>27.29<br>27.32<br>27.41<br>27.57<br>27.62<br>28.19<br>29.15<br>25.29<br>25.29<br>25.29<br>25.29<br>25.57<br>26.68<br>26.81          |         | 0<br>0.25<br>0.44<br>0.51<br>0.56<br>0.56<br>0.56<br>0.56<br>0.59<br>0.78<br>0.54<br>0.59<br>1.56<br>2.52<br>-0.7<br>-0.51<br>-0.51<br>0.48<br>0.79<br>0.88<br>1.01 | Positive<br>Positive<br>Positive<br>Positive<br>Positive<br>Positive<br>Positive<br>Positive<br>Positive<br>Positive<br>Positive<br>Positive<br>Positive<br>Positive<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative | 26.4<br>26.5<br>27.7<br>27.7<br>27.7<br>27.7<br>27.7<br>27.7<br>27.7<br>27                                                                   | Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Positive<br>Positive<br>Positive<br>Positive<br>Positive<br>Positive | 40.0<br>40.0<br>40.0<br>40.0<br>40.0<br>40.0<br>40.0<br>40.0 |

When the second donor is to be analyzed, select the recipient's record in the sample search window next to the home button. The samples which have already been genotyped will appear as they did when initially entered into TRACE Analysis<sup>™</sup> Software. Notice that the check boxes by default are not checked, as these samples have already been genotyped by the software.


If you click the Add Donor 🛨 button, a new set of fields appear for anew sample record to be associated with the same recipient sample.

| CRACET                       |                 |            |                 |              |         |               |               | -        |
|------------------------------|-----------------|------------|-----------------|--------------|---------|---------------|---------------|----------|
| in You links                 |                 |            |                 |              |         |               |               |          |
| 4                            |                 | score Ourt | dî l            | t) 🚮 🗸       |         | -             |               | 2        |
| •                            |                 |            |                 |              |         |               | <u> </u>      | <u>`</u> |
|                              |                 | - 1090     |                 | Set          | up      |               | _             |          |
| Incipient First Name         | Ulla            | 1          | 2 3 4           | 5 6          | 7 8     | 9 10          | 11 12         | ,        |
| technierit Last Name         | Ulla UPN        | A          |                 |              |         | 1             |               | ì.       |
| belgier# (D                  | Ulla Sample ID  |            |                 |              |         |               |               |          |
| iangia ID                    |                 | B          |                 | Boxes are    |         |               |               | 1        |
| Secondarian regist           |                 |            | defau           | lt, as their | sampl   | e typin       | -             | 4        |
| Nex of Dethi                 |                 | C          | data is         | approve      | d       |               |               | L        |
| Not of Transplant.           |                 |            |                 |              | ++      | $\rightarrow$ | $\rightarrow$ | 1        |
| iender                       | O Male O Female | D          | 1               |              |         |               |               | L        |
| annest                       |                 | E T        |                 |              |         |               |               | 1        |
| Sistace Type                 |                 |            | Only t          | nis sample   | will be | e added       | to            |          |
| (econd Date of<br>Transplant | xa-xa-xaxax 🕅 🍃 | F          | / the ge        | otyping e    | experin | nent, bi      | ıt            | 1        |
|                              | Donor Of        |            |                 | a will be    |         |               |               | 4        |
| bosor Parst Marine           | Jonna           | G          | this re         |              |         | ~             |               | L        |
| Dovor Last Name              |                 | н          | this re         | pient        | ++      | $\rightarrow$ | -             | 1        |
| CE tored                     | Jonna UPN       | 7          |                 |              |         |               |               |          |
| ampio 3D                     | Jonna Sample ID |            |                 |              |         |               |               |          |
| Concentration regist         |                 |            |                 |              |         |               |               | _        |
| ten of liters                | x0x-30x-30000x  | -0000      | 10000000000     | Expensed as  | ane:    | -00000        | 100000        | 50       |
| Sender                       | O Mole O Female |            | 88888888 /      | Operator 10x |         | 12000         | *****         | 8        |
| Comment                      |                 |            | 888888888       | Deup Bout    |         | 38888         | *****         | X        |
|                              | Donor Q         | · 2000     | .   2000000     |              |         | 133333        |               | 8        |
| Donor First Name             |                 |            | Sangle vev      |              |         |               |               | _        |
| Notor Last Name              | Last Name       |            | President reser |              |         |               | nay ven       |          |


Enter the new sample information for the second donor, as well as the Date of the Second Transplant. When the Screen button is clicked, only the new sample is added to the experiment.



TRACE Analysis<sup>™</sup> will now generate a genotyping protocol for only the second donor.



When data is imported, one half of the plate image will be colored.



After data Approval, TRACE Analysis<sup>™</sup> will display informative assays for the combinations of samples associated with the recipient sample.

| Marker<br>240<br>356 | Chr. location | Informative for |          |          |          |
|----------------------|---------------|-----------------|----------|----------|----------|
|                      | 0             |                 | Ulla     | Jonna    | Annika   |
| 356                  | 8q            | Ulla            | Positive | Negative | Negativ  |
|                      | 18q           | Ulla            | Positive | Negative | Negativ  |
| 469                  | 7p            | Jonna           | Negative | Positive | Negativ  |
| 504                  | 17p           | Ulla            | Positive | Negative | Negativ  |
| 520                  | 20q           | Jonna           | Negative | Positive | Negativ  |
| 531                  | 17p           | Jonna           | Negative | Positive | Negativ  |
| 634                  | 11q           | Ulla            | Positive | Negative | Negativ  |
| 736                  | Xp            | Annika          | Negative | Negative | Positive |
| 768                  | 18q           | Ulla            | Positive | Negative | Negativ  |
| 819                  | 14q           | Jonna           | Negative | Positive | Negativ  |
| 854                  | 12q           | Annika          | Negative | Negative | Positive |
| 954                  | 6q            | Annika          | Negative | Negative | Positive |
|                      |               |                 |          |          |          |
|                      |               |                 |          |          |          |
|                      |               |                 |          |          |          |

Clicking the data overview button shows the genotyping results for all assays.

| QTRACE®             |                  |               |                 |          |          |          |
|---------------------|------------------|---------------|-----------------|----------|----------|----------|
|                     |                  |               |                 |          |          |          |
| <b>^</b>            |                  | New Screen    | Quant           |          |          |          |
| P                   | ecipient         |               |                 | Туре     |          |          |
| Recipient Name      | Ulla             | Chr. location | Informative for | Ulla     | Jonna    | Annika   |
| Recipient ID        | Ulla UPN         | 10            | None            | Negative | Negative | Negativ  |
|                     |                  | 170           | None            | Positive | Negative | Positive |
| Sample ID           | Ulla Sample ID   | 59            | None            | Positive | Positive | Positive |
| Concentration ng/ul | 100              | 29            | None            | Positive | Positive | Positive |
| Date of Birth       | 7/10/2017        | 8g            | Ulla            | Positive | Negative | Negativ  |
| Date of Transplant  | 7/10/2017        | 4q            | None            | Negative | Positive | Positive |
| Gender              | O Male @ Female  | Sq            | None            | Positive | Positive | Negative |
| Comment             |                  | 20q           | None            | Positive | Positive | Positive |
| Disease Type        |                  | 18q           | None            | Negative | Negative | Negativ  |
|                     | Donor x          | 6q            | None            | Negative | Positive | Positive |
| Donor Name          | Jonna            | 1p            | None            | Negative | Negative | Negative |
|                     | Jonna UPN        | 18q           | Ulla            | Positive | Negative | Negative |
| Donor ID            |                  | 11p           | None            | Negative | Positive | Positive |
| Sample ID           | Jonna Sample ID  | 12q           | None            | Negative | Positive | Positive |
| Concentration ng/ul | 100              | 18q           | None            | Positive | Positive | Positive |
| Gender              | O Male @ Female  | 2q            | None            | Positive | Negative | Positive |
| Comment             |                  | 6q            | None            | Positive | Negative | Positive |
|                     | Donor ×          | 3q            | None            | Positive | Positive | Positive |
| Donor Name          | Annika           | 7p            | Jonna           | Negative | Positive | Negativ  |
| Donor ID            | Annika UPN       | 17p           | Ulla            | Positive | Negative | Negative |
| Sample ID           | Annika Sample ID | 8q            | None            | Negative | Positive | Positive |
| Concentration ng/ul | 100              | 20q           | Jonna           | Negative | Positive | Negativ  |
| Gender              | O Male @ Female  | 17p           | Jonna<br>None   | Negative | Positive | Negative |

## **Custom Genotyping Panels**

With TRACE Analysis<sup>™</sup> Software version 1.08, users of TRACE Analysis<sup>™</sup> Software can perform customized genotyping. They can choose which assays they want to use for genotyping experiments. They are able to create, store and use custom genotyping assay panels to perform genotyping using TRACE Analysis<sup>™</sup> Software. This additional functionality requires special license keys to be issued from JETA Molecular. Please contact your local sales representative or JETA Molecular directly for access.

TRACE Analysis<sup>™</sup> will generate unique protocols, based on the experimental set up and it will score the data, as it does for standard QTRACE Genotyping Plates manufactured by JETA. Users who perform off-line genotyping and then assign informative assays in the software, will no longer have to do this.

Genotyping Panels are created using entire rows or columns of a 96-well plate. By default, each panel must contain one positive control and one negative control reaction. The possible number of INDEL assays in a genotyping panel are 6, 10, 14, 22, 30, 34, 38 and 46.

| Orientation | Available INDEL Assay Panel Sizes | Plate Throughput |
|-------------|-----------------------------------|------------------|
| 1 Row       | 10 Assays                         | 8 Samples        |
| 2 Rows      | 22 Assays                         | 4 Samples        |
| 3 Rows      | 34 Assays                         | 2 Samples        |
| 4 Rows      | 46 Assays                         | 2 Samples        |
| 1 Column    | 6 Assays                          | 12 Samples       |
| 2 Columns   | 14 Assays                         | 6 Samples        |
| 3 Columns   | 22 Assays                         | 4 Samples        |
| 4 Columns   | 30 Assays                         | 3 Samples        |
| 5 Columns   | 38 Assays                         | 2 Samples        |
| 6 Columns   | 46 Assays                         | 2 Samples        |

Under File, there is an option called 'Plate editor'

| File | View Help       |        |   |     |        |      |
|------|-----------------|--------|---|-----|--------|------|
|      | New             | Ctrl+N |   |     |        |      |
|      | Home            | Alt+H  |   | New | Screen | Quan |
|      | Preferences     | Alt+P  |   |     |        |      |
|      | Plate editor    | Alt+E  |   |     |        |      |
|      | Data management | Alt+D  |   |     |        |      |
|      | Migrate data    | Alt+M  | R |     |        |      |
|      | Custom reports  | Alt+R  |   |     |        |      |
|      | Exit            |        |   |     |        |      |

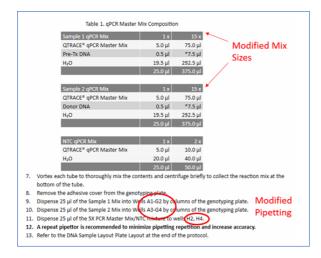
New plate configurations are created by pressing the 'Add new' button. Give the plate a name.

Choose the desired plate orientation and pick from the available assays to create a custom panel.

| PlateEditorWindow   |              |                            |          | - 0   | х |
|---------------------|--------------|----------------------------|----------|-------|---|
| Plate configuration | a la Vincent | <ul> <li>Add ne</li> </ul> | w Delete |       |   |
| Orientation Rows    | v            |                            |          |       |   |
| 102                 | 275          | 469                        | 650      | ✔ 819 |   |
|                     |              |                            |          |       |   |
| 113                 | 291          | 472                        | 663      | 824   |   |
| 120                 | 305          | 482                        | 670      | ✔ 832 |   |
| 137                 | 312          | 493                        | 678      | ✔ 840 |   |
| 148                 | 326          | 504                        | 681      | 854   |   |
| 157                 | 333          | 519                        | 694      | 874   |   |
| 176                 | ✓ 345        | 520                        | 706      | 884   |   |
| 183                 | 356          | 531                        | 710      | 888   |   |
| 198                 | 359          | 548                        | 721      | 892   |   |
| 209                 | 361          | 555                        | 736      | 907   |   |
| 222                 | 373          | 567                        | 748      | 916   |   |
| 235                 | 386          | 574                        | 755      | 923   |   |
| 240                 | 396          | 585                        | 768      | 936   |   |
| 252                 | ✔ 408        | 597                        | 777      | ✓ 948 |   |
| 267                 | 425          | 601                        | 784      | ✓ 954 |   |
| 267 N00470          | 434          | 615                        | 795      | 962   |   |
| 267 010210          | 441          | 626                        | 803      | 971   |   |
| 267 510450          | 450          | 634                        | 803-A3   | 987   |   |
| Save changes        | Cancel       |                            |          |       |   |

Once a Plate has been saved using the Plate editor, the plate appears as an option in the Plate Configuration menu in the Preferences.

| late setup | Custom types  | Concentrations | Data and Reports | Data locations | Material tracking | Users   | Language |  |
|------------|---------------|----------------|------------------|----------------|-------------------|---------|----------|--|
| Machine    | for genotypi  | ABI 7500       | v2.0.6           | v              |                   |         |          |  |
| Machine    | for monitorin | ABI 7500       | v2.0.6           | v              |                   |         |          |  |
| Layout t   | уре           |                |                  | ~              |                   |         |          |  |
| Replicate  | 25            | qPCR Trip      | licates ~        |                |                   |         |          |  |
| Color mo   | ode           | Pastel         | v Pla            | ate for genoty | ping a la Vinc    | ent     | *        |  |
|            |               |                | Pla              | ate for monito | 96-low o          | density | ~        |  |
|            |               |                |                  |                |                   |         |          |  |
|            |               |                |                  |                |                   |         |          |  |


The following is an example of a single donor:patient pair being tested by a 14 member panel with a column configuration:

Sample View:



#### Assay View:





The software can also combine multiple templates, if needed.

The following is an example of using 3 different column templates in one experiment. The first 2 samples added use 2 columns, the next 2 use 3 column and the last pair use 1 column.

The protocol instructs the user to make 7 different mixes for typing. The mixes vary on size, depending on how many assays are in the panel

| Sample 1 qPCR Mix                   | 1 x             | 15 x           | Sample 5 qPCR Mix                   | 1 x            | 7 x      |
|-------------------------------------|-----------------|----------------|-------------------------------------|----------------|----------|
| QTRACE <sup>®</sup> qPCR Master Mix | 5.0 μl          | <b>75.0 μl</b> | QTRACE <sup>®</sup> qPCR Master Mix | 5.0 μl         | 35.0 μl  |
| 180425R6-3 DNA                      | 0.5 µl          | *7.5 μl        | 180425R6-5 DNA                      | 0.5 μl         | *3.5 μl  |
| H₂O                                 | <b>19.5 μ</b> Ι | 292.5 µl       | H₂O                                 | <b>19.5</b> μl | 136.5 µl |
|                                     | 25.0 μl         | 375.0 μl       |                                     | 25.0 µl        | 175.0 µl |
| Sample 2 qPCR Mix                   | 1 x             | 15 x           | Sample 6 qPCR Mix                   | 1 x            | 7 x      |
| QTRACE <sup>®</sup> qPCR Master Mix | 5.0 μl          | 75.0 μl        | QTRACE <sup>®</sup> gPCR Master Mix | 5.0 µl         | 35.0 µl  |
| 180425D6-3 DNA                      | 0.5 μl          | *7.5 μl        | 180425D6-5 DNA                      | 0.5 μl         | *3.5 µl  |
| H₂O                                 | <b>19.5 μ</b> Ι | 292.5 µl       | H <sub>2</sub> O                    | 19.5 μl        | 136.5 µl |
|                                     | 25.0 µl         | 375.0 μl       | 1120                                | 25.0 μl        | 175.0 μl |
| Sample 3 qPCR Mix                   | 1 x             | 23 x           |                                     |                |          |
| QTRACE <sup>®</sup> qPCR Master Mix | 5.0 μl          | 115.0 μl       | NTC qPCR Mix                        | 1 x            | 6 x      |
| 180425R6-4 DNA                      | 0.5 µl          | *11.5 μl       | QTRACE <sup>®</sup> qPCR Master Mix | <b>5.0 μ</b> Ι | 30.0 µl  |
| H₂O                                 | <b>1</b> 9.5 μl | 448.5 μl       | H₂O                                 | 20.0 µl        | 120.0 μl |
|                                     | 25.0 µl         | 575.0 μl       |                                     | 25.0 µl        | 150.0 µl |

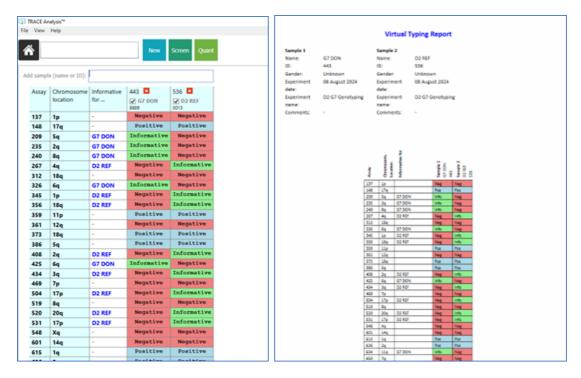
#### and the pipetting instruction respond to the templates being used:

8. Remove the adhesive cover from the genotyping plate.

- 9. Dispense 25  $\mu l$  of the Sample 1 Mix into Wells A1-G2 by columns of the genotyping plate.
- 10. Dispense 25  $\mu$ l of the Sample 2 Mix into Wells A3-G4 by columns of the genotyping plate.
- 11. Dispense 25  $\mu$ l of the Sample 3 Mix into Wells A5-G7 by columns of the genotyping plate.
- 12. Dispense 25  $\mu$ l of the Sample 4 Mix into Wells A8-G10 by columns of the genotyping plate.
- 13. Dispense 25 µl of the Sample 5 Mix into Wells A11-G11 by columns of the genotyping plate.
- 14. Dispense 25  $\mu l$  of the Sample 6 Mix into Wells A12-G12 by columns of the genotyping plate.
- 15. Dispense 25 μl of the 5X PCR Master Mix/NTC mixture to wells H2, H4, H7, H10, H11, H12.
- 16. A repeat pipettor is recommended to minimize pipetting repetition and increase accuracy.
- 17. Refer to the DNA Sample Layout Plate Layout at the end of the protocol.

#### Here is the layout:

|   | 1                               | 2                                  | 3                               | 4                                  | 5                               | 6                               | 7                                  | 8                               | 9                               | 10                                 | 11                                 | 12                                 |
|---|---------------------------------|------------------------------------|---------------------------------|------------------------------------|---------------------------------|---------------------------------|------------------------------------|---------------------------------|---------------------------------|------------------------------------|------------------------------------|------------------------------------|
| ł | 180425R6-3<br>180425R6-3<br>291 | 180425R6-3<br>180425R6-3<br>519    | 180425D6-3<br>180425D6-3<br>291 |                                    | 180425R6-4<br>180425R6-4<br>137 | 180425R6-4<br>180425R6-4<br>408 | 180425R6-4<br>180425R6-4<br>710    | 180425D6-4<br>180425D6-4<br>137 | 180425D6-4<br>180425D6-4<br>408 | 180425D6-4<br>180425D6-4<br>710    | 180425R6-5<br>180425R6-5<br>137    | 180425D6-5<br>180425D6-5<br>137    |
| 3 | 180425R6-3<br>180425R6-3<br>305 | 180425R6-3<br>180425R6-3<br>634    | 180425D6-3<br>180425D6-3<br>305 | 180425D6-3<br>180425D6-3<br>634    | 180425R6-4<br>180425R6-4<br>148 | 180425R6-4<br>180425R6-4<br>519 | 180425R6-4<br>180425R6-4<br>721    | 180425D6-4<br>180425D6-4<br>148 | 180425D6-4<br>180425D6-4<br>519 | 180425D6-4<br>180425D6-4<br>721    | 180425R6-5<br>180425R6-5<br>148    | 180425D6-5<br>180425D6-5<br>148    |
| 2 | 180425R6-3<br>180425R6-3<br>312 |                                    | 180425D6-3<br>180425D6-3<br>312 | 180425D6-3<br>180425D6-3<br>824    | 180425R6-4<br>180425R6-4<br>209 | 180425R6-4<br>180425R6-4<br>520 | 180425R6-4<br>180425R6-4<br>736    | 180425D6-4<br>180425D6-4<br>209 | 180425D6-4<br>180425D6-4<br>520 | 180425D6-4<br>180425D6-4<br>736    | 180425R6-5<br>180425R6-5<br>209    | 180425D6-5<br>180425D6-5<br>209    |
| C | 180425R6-3<br>180425R6-3<br>326 |                                    | 180425D6-3<br>180425D6-3<br>326 |                                    | 180425R6-4<br>180425R6-4<br>345 | 180425R6-4<br>180425R6-4<br>601 | 180425R6-4<br>180425R6-4<br>748    | 180425D6-4<br>180425D6-4<br>345 | 180425D6-4<br>180425D6-4<br>601 | 180425D6-4<br>180425D6-4<br>748    | 180425R6-5<br>180425R6-5<br>235    | 180425D6-5<br>180425D6-5<br>235    |
|   | 180425R6-3<br>180425R6-3<br>345 | 180425R6-3<br>180425R6-3<br>854    | 180425D6-3<br>180425D6-3<br>345 | 180425D6-3<br>180425D6-3<br>854    | 180425R6-4<br>180425R6-4<br>356 | 180425R6-4<br>180425R6-4<br>615 | 180425R6-4<br>180425R6-4<br>832    | 180425D6-4<br>180425D6-4<br>356 | 180425D6-4<br>180425D6-4<br>615 | 180425D6-4<br>180425D6-4<br>832    | 180425R6-5<br>180425R6-5<br>240    | 180425D6-5<br>180425D6-5<br>240    |
|   | 180425R6-3<br>180425R6-3<br>434 |                                    | 180425D6-3<br>180425D6-3<br>434 | 180425D6-3<br>180425D6-3<br>907    | 180425R6-4<br>180425R6-4<br>359 | 180425R6-4<br>180425R6-4<br>626 | 180425R6-4<br>180425R6-4<br>840    | 180425D6-4<br>180425D6-4<br>359 | 180425D6-4<br>180425D6-4<br>626 | 180425D6-4<br>180425D6-4<br>840    | 180425R6-5<br>180425R6-5<br>267    | 180425D6-5<br>180425D6-5<br>267    |
| 3 | 180425R6-3<br>180425R6-3<br>469 | 180425R6-3<br>180425R6-3<br>RNaseP | 180425D6-3<br>180425D6-3<br>469 | 180425D6-3<br>180425D6-3<br>RNaseP | 180425R6-4<br>180425R6-4<br>373 | 180425R6-4<br>180425R6-4<br>634 | 180425R6-4<br>180425R6-4<br>RNaseP | 180425D6-4<br>180425D6-4<br>373 | 180425D6-4<br>180425D6-4<br>634 | 180425D6-4<br>180425D6-4<br>RNaseP | 180425R6-5<br>180425R6-5<br>RNaseP | 180425D6-5<br>180425D6-5<br>RNaseP |
| ł | 180425R6-3<br>180425R6-3<br>504 | NTC<br>RNaseP                      | 180425D6-3<br>180425D6-3<br>504 | NTC<br>RNaseP                      | 180425R6-4<br>180425R6-4<br>386 | 180425R6-4<br>180425R6-4<br>706 | NTC<br>RNaseP                      | 180425D6-4<br>180425D6-4<br>386 | 180425D6-4<br>180425D6-4<br>706 | NTC<br>RNaseP                      | NTC<br>RNaseP                      | NTC<br>RNaseP                      |


## Virtual Typing

ντ

Virtual Typing functionality was added in TRACE Analysis<sup>™</sup> version 1.5. Virtual Typing allows the user to compare any DNA genotyped against any other using the same genotyping plate configuration. This functionality is helpful for validation of new lots of plates, as well as for research purposes. Reports can also be generated from any custom view created in virtual typing.

Validation of a new lot of plates may require verification of the typing patterns within a plate as well as with multiple known DNA samples. Inspecting 46 assays many times over against a spreadsheet or printed list of known genotypes is extremely tedious and prone to error. With Virtual Typing functionality it is easy to quickly see whether a new lot of genotyping plates gives the expected results.

Similarly, if users need to make control mixtures, the VirtualTyping function allows easy comparison of controls which can be made for specifc assays of interest.

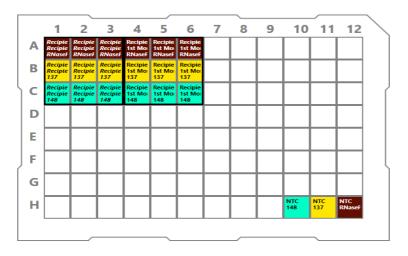


# **Monitoring Test**

Once recipient specific markers have been found, quantification is performed to monitor engraftment. In the monitoring test, two or more of the informative assays is used to quantify the DNA of interest in an unknown sample relative to a reference sample. Any of the informative assays identified in the genotyping can be used to perform monitoring.

## The QTRACE<sup>®</sup> Analysis System

The fraction of DNA positive for the informative marker in the unknown composition is determined relative to the pure reference sample DNA and the result is expressed as a percentage (ratio).

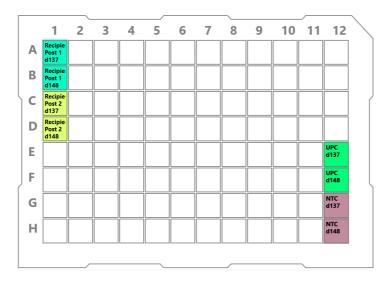

### **Monitoring Sample View**

Monitoring Samples are arranged into groups byTRACE Analysis<sup>™</sup> Software. The NTC reactions for each assay are in the lower right hand corner of the plate.

|            | 4                         |                              | 2                         | 4                         |                              | ~                         | 7 | ~ | 0 | 10         |            | 40            | $\overline{}$ |
|------------|---------------------------|------------------------------|---------------------------|---------------------------|------------------------------|---------------------------|---|---|---|------------|------------|---------------|---------------|
|            | 1                         | _                            | _                         | -                         | _                            | _                         | / | 8 | 9 | 10         | 11         | 12            |               |
| Α          | Recipie                   | Recipie<br>Recipie<br>RNaseł | Recipie                   | 1st Mo                    | Recipie<br>1st Moi<br>RNaseF | 1st Moi                   |   |   |   |            |            |               |               |
| В          | Recipie<br>Recipie<br>137 | Recipie<br>Recipie<br>137    | Recipie<br>Recipie<br>137 | Recipie<br>1st Moi<br>137 | Recipie<br>1st Moi<br>137    | Recipie<br>1st Moi<br>137 |   |   |   |            |            |               |               |
| ) <b>C</b> | Recipie<br>Recipie<br>148 | Recipie<br>Recipie<br>148    | Recipie<br>Recipie<br>148 |                           | Recipie<br>1st Moi<br>148    |                           |   |   |   |            |            |               |               |
| D          |                           |                              |                           |                           |                              |                           |   |   |   |            |            |               |               |
| E          |                           |                              |                           |                           |                              |                           |   |   |   |            |            |               |               |
| F          |                           |                              |                           |                           |                              |                           |   |   |   |            |            |               |               |
| G          |                           |                              |                           |                           |                              |                           |   |   |   |            |            |               |               |
| н          |                           |                              |                           |                           |                              |                           |   |   |   | NTC<br>148 | NTC<br>137 | NTC<br>RNaseF |               |
|            |                           |                              |                           |                           |                              |                           |   |   |   |            | _          |               |               |

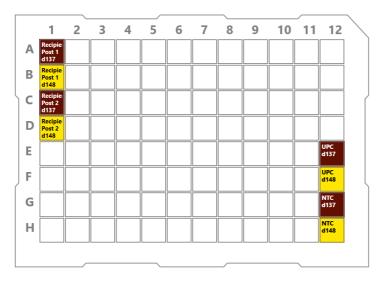
### **Monitoring Assay View**

TRACE Analysis<sup>™</sup> Software adds the assays to the plate in rows.




## The DigitalTRACE<sup>™</sup> Analysis System

The fraction of DNA positive for the informative marker in the unknown composition is determined relative to the reference gene (RNase P) signal and the result is expressed as a percentage (ratio).


### **Monitoring Sample View**

Monitoring Samples are arranged into groups byTRACE Analysis<sup>™</sup> Software. The NTC and UPC (Universal Positive Control) reactions for each assay are in the lower right hand corner of the plate.



### **Monitoring Assay View**

TRACE Analysis<sup>™</sup> Software adds the assays to the plate in columns.



See section <u>Drag and Drop Plate Layouts</u> to move a well from one location to another location.

## Assigning Informative Markers

TRACE Analysis<sup>™</sup> Software allows you to perform sample monitoring and leverage all the features of TRACE Analysis<sup>™</sup>, without the need to genotype the sample in advance. If you know that an assay is informative for your sample, you can designate its informative status and then use it as you normally would.

In order to use this feature of TRACE Analysis™:

Enter all the information necessary about the Recipient and the Donor samples and choose an appropriate Reference Sample.

Enter information related to the Post Sample(s) being tested.

In the Informative Markers section, click the "Add Marker" 🖸 button.

When this button is clicked, a window opens with all Assays available for assignment.

| 0         312           0         326           0         333           0         345           0         356           0         359 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 493<br>504<br>519<br>520<br>531                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                         | 678<br>681<br>694<br>706                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                     | 854<br>874<br>884                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                         |
|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| 326<br>333<br>0 0 345<br>0 0 356<br>359                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 504<br>519<br>520                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                         | 681<br>694                                                                                                                                                                                                                                                                                                                                | X O O                                                                                                                                                                                                                                                                                                                                                                                               | 874                                                     | XOO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                         |
| 0         333           0         345           0         356           0         359                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 519<br>520                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                         | 694                                                                                                                                                                                                                                                                                                                                       | XOO                                                                                                                                                                                                                                                                                                                                                                                                 |                                                         | ALC: NOT THE OWNER OF THE OWNER OWNER OF THE OWNER |                                                         |
| 345<br>356<br>0 0<br>359                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 520                                                                                                                                                                                                                                                                                                                                       | XOO                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                           | Second Second                                                                                                                                                                                                                                                                                                                                                                                       | 884                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                         |
| 356                                                                                                                                   | XOO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                           | Annual                                                                                                                                                                                                                                                                                                                         | 706                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                     |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                         |
| 359                                                                                                                                   | tion of the second seco | 531                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                     | 888                                                     | × O O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                         |
| -                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                         | 710                                                                                                                                                                                                                                                                                                                                       | XOO                                                                                                                                                                                                                                                                                                                                                                                                 | 892                                                     | $\times$ $\circ$ $\circ$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |
|                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 548                                                                                                                                                                                                                                                                                                                                       | X O O                                                                                                                                                                                                                                                                                                                                                                                                                                   | 721                                                                                                                                                                                                                                                                                                                                       | $\times$ $\odot$                                                                                                                                                                                                                                                                                                                                                                                    | 907                                                     | $\mathbf{X} \odot \mathbf{O}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                         |
| 361                                                                                                                                   | XOO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 555                                                                                                                                                                                                                                                                                                                                       | X O O                                                                                                                                                                                                                                                                                                                                                                                                                                   | 736                                                                                                                                                                                                                                                                                                                                       | $\times$ $\odot$                                                                                                                                                                                                                                                                                                                                                                                    | 916                                                     | $\mathbb{X} \bigcirc \odot$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                         |
| 373                                                                                                                                   | XOO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 567                                                                                                                                                                                                                                                                                                                                       | X O O                                                                                                                                                                                                                                                                                                                                                                                                                                   | 748                                                                                                                                                                                                                                                                                                                                       | $\odot$                                                                                                                                                                                                                                                                                                                                                                                             | 923                                                     | XOO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                         |
| 386                                                                                                                                   | XOO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 574                                                                                                                                                                                                                                                                                                                                       | X O O                                                                                                                                                                                                                                                                                                                                                                                                                                   | 755                                                                                                                                                                                                                                                                                                                                       | × •                                                                                                                                                                                                                                                                                                                                                                                                 | 936                                                     | XOO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                         |
| 396                                                                                                                                   | × OO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 585                                                                                                                                                                                                                                                                                                                                       | X O O                                                                                                                                                                                                                                                                                                                                                                                                                                   | 768                                                                                                                                                                                                                                                                                                                                       | × O O                                                                                                                                                                                                                                                                                                                                                                                               | 948                                                     | $\mathbf{X} \bigcirc \mathbf{O}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                         |
| 408                                                                                                                                   | × O •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 597                                                                                                                                                                                                                                                                                                                                       | X O O                                                                                                                                                                                                                                                                                                                                                                                                                                   | 777                                                                                                                                                                                                                                                                                                                                       | × O O                                                                                                                                                                                                                                                                                                                                                                                               | 954                                                     | $\times$ $\odot$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                         |
| 425                                                                                                                                   | XOO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 601                                                                                                                                                                                                                                                                                                                                       | X O O                                                                                                                                                                                                                                                                                                                                                                                                                                   | 784                                                                                                                                                                                                                                                                                                                                       | × O ●                                                                                                                                                                                                                                                                                                                                                                                               | 962                                                     | $\times$ $\circ$ $\circ$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |
| 434                                                                                                                                   | XOO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 615                                                                                                                                                                                                                                                                                                                                       | × O O                                                                                                                                                                                                                                                                                                                                                                                                                                   | 795                                                                                                                                                                                                                                                                                                                                       | × O O                                                                                                                                                                                                                                                                                                                                                                                               | 971                                                     | × O O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                         |
| 441                                                                                                                                   | XOO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 626                                                                                                                                                                                                                                                                                                                                       | × • •                                                                                                                                                                                                                                                                                                                                                                                                                                   | 803                                                                                                                                                                                                                                                                                                                                       | × O O                                                                                                                                                                                                                                                                                                                                                                                               | 987                                                     | × O O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                         |
| 450                                                                                                                                   | XOO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 634                                                                                                                                                                                                                                                                                                                                       | XOO                                                                                                                                                                                                                                                                                                                                                                                                                                     | 819                                                                                                                                                                                                                                                                                                                                       | × • •                                                                                                                                                                                                                                                                                                                                                                                               | 990                                                     | XOO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                         |
| 469                                                                                                                                   | × O O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 650                                                                                                                                                                                                                                                                                                                                       | × O O                                                                                                                                                                                                                                                                                                                                                                                                                                   | 824                                                                                                                                                                                                                                                                                                                                       | <b>X</b> • •                                                                                                                                                                                                                                                                                                                                                                                        |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                         |
| 472                                                                                                                                   | XOO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 663                                                                                                                                                                                                                                                                                                                                       | × O O                                                                                                                                                                                                                                                                                                                                                                                                                                   | 832                                                                                                                                                                                                                                                                                                                                       | × O O                                                                                                                                                                                                                                                                                                                                                                                               |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                         |
| 482                                                                                                                                   | × O O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 670                                                                                                                                                                                                                                                                                                                                       | × O O                                                                                                                                                                                                                                                                                                                                                                                                                                   | 840                                                                                                                                                                                                                                                                                                                                       | × • •                                                                                                                                                                                                                                                                                                                                                                                               |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                         |
|                                                                                                                                       | 396           408           425           434           441           450           469           472                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 396         第         ○           408         第         ○           408         第         ○           425         第         ○           434         第         ○           441         第         ○           450         第         ○           459         第         ○           469         第         ○           482         第         ○ | 296         №         ○         585           408         №         ○         597           425         №         ○         601           434         №         ○         615           441         №         ○         634           459         №         ○         634           0         450         №         ○         634           0         459         №         ○         650           442         №         ○         663 | 396     ⋈     ○     585     ⋈     ○       408     ⋈     ○     597     ⋈     ○       423     ⋈     ○     601     ⋈     ○       434     ⋈     ○     601     ⋈     ○       441     ⋈     ○     634     ⋈     ○       450     ⋈     ○     634     ⋈     ○       472     ⋈     ○     650     ⋈     ○       482     ⋈     ○     670     ⋈     ○ | 396     第     ○     585     第     ○     776       408     第     ○     597     第     ○     777       425     第     ○     601     第     ○     774       ●     434     第     ○     615     第     ○       441     第     ○     634     第     ○     819       ○     450     第     ○     634     第     ○       469     第     ○     653     第     ○     824       ○     482     第     ○     670     第     ○ | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$ | 296       ₩       ○       585       ₩       ○       768       ₩       ○       948         408       ※       ○       597       ೫       ○       777       ೫       ○       954         425       ೫       ○       601       ೫       ○       784       ೫       ○       954         ●       434       ೫       ○       615       ೫       ○       975       ೫       ○       971         ○       436       ೫       ○       615       ೫       ○       803       ೫       ○       971         ○       430       ೫       ○       634       ೫       ○       819       ೫       ○       997         ○       459       ೫       ○       650       ೫       ○       819       №       ○       990         ○       472       ೫       ○       650       ೫       ○       822       ※       ○       848       ○       848       ○       0       990       990       990       990       948       ○       948       ○       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                           | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$ |

Assign the informative assays by clicking the circle and sample combination which is appropriate.

Press the 'X' to reset the choice for that assay.

In case of DigitalTRACE<sup>™</sup> Assays, the assay name begins with the "d" symbol.

| Markers  |        |      |       |      |       |      |       | -    |    | × |
|----------|--------|------|-------|------|-------|------|-------|------|----|---|
|          |        |      |       |      |       |      |       |      |    |   |
| d102     | X O O  | d312 | X O O | d493 | × 00  | d678 | XOO   | d854 | ×o | 0 |
| d113     | XOO    | d326 | × O O | d504 | × O O | d681 | × O O | d874 | ×O | 0 |
| d120     | XOO    | d333 | × O O | d519 | XOO   | d694 | × O O | d884 | ×O | 0 |
| d137     | X O O  | d345 | × O O | d520 | × O O | d706 | X O O | d888 | ×O | 0 |
| d148     | XOO    | d356 | X O O | d531 | XOO   | d710 | × O O | d892 | ×O | 0 |
| d157     | XOO    | d359 | × O O | d548 | × O O | d721 | × O O | d907 | ×O | 0 |
| d176     | × O O  | d361 | × O O | d555 | XOO   | d736 | × O O | d916 | ×O | 0 |
| d183     | × OO   | d373 | × O O | d567 | XOO   | d748 | × O O | d923 | ×O | 0 |
| d198     | XOO    | d386 | × OO  | d574 | XOO   | d755 | × O O | d936 | ×O | 0 |
| d209     | XOO    | d396 | × O O | d585 | × O O | d768 | × O O | d948 | ×O | 0 |
| d222     | × O O  | d408 | × O O | d597 | XOO   | d777 | × O O | d954 | ×O | 0 |
| d235     | × O O  | d425 | × O O | d601 | × O O | d784 | × O O | d962 | ×O | 0 |
| d240     | XOO    | d434 | × O O | d615 | XOO   | d795 | × O O | d971 | ×O | 0 |
| d252     | XOO    | d441 | ×OO   | d626 | XOO   | d803 | × O O | d987 | ×O | 0 |
| d267     | × OO   | d450 | × O O | d634 | × O O | d819 | × O O | d990 | ×O | 0 |
| d275     | × O O  | d469 | × O O | d650 | × O O | d824 | × O O |      |    |   |
| d291     | XOO    | d472 | × O O | d663 | XOO   | d832 | XOO   |      |    |   |
| d305     | ×OO    | d482 | × O O | d670 | × O O | d840 | × O O |      |    |   |
|          |        |      |       |      |       |      |       |      |    |   |
|          |        |      |       |      |       |      |       |      |    |   |
| DELs HLA | Custom |      |       |      |       |      |       |      |    |   |
| Cancel   | 1      |      |       |      |       |      |       |      | 0  | k |

In the HLA tab, you can select for HLA TRACE<sup>™</sup> Assays designed for HLA Loss of Heterozygosity monitoring.

| Markers |            |        |                          |      |      |      |       | - |   | × |
|---------|------------|--------|--------------------------|------|------|------|-------|---|---|---|
|         |            |        |                          |      |      |      |       |   |   |   |
|         |            |        |                          |      |      |      |       |   |   |   |
| H005    | X O O      | H039   | XOO                      | H104 | X OO | H115 | × OO  |   |   |   |
| H007    | XOO        | H041   | XOO                      | H105 | XOO  | H116 | XOO   |   |   |   |
| H009    | X O O      | H043   | XOO                      | H106 | XOO  | H117 | XOO   |   |   |   |
| H017    | × OO       | H045   | $\times$ $\circ$ $\circ$ | H107 | XOO  | H118 | × O O |   |   |   |
| H020    | × O O      | H051   | XOO                      | H108 | XOO  | H119 | × O O |   |   |   |
| H022    | XOO        | H052   | XOO                      | H109 | XOO  |      |       |   |   |   |
| H025    | × O O      | H053   |                          | H110 | XOO  |      |       |   |   |   |
| H028    | XOO        | H054   | XOO                      | H111 | XOO  |      |       |   |   |   |
| H029    | XOO        | H101   | XOO                      | H112 | XOO  |      |       |   |   |   |
| H036    | XOO        | H102   | XOO                      | H113 | XOO  |      |       |   |   |   |
| H038    | XOO        | H103   | X 0 0                    | H114 | XOO  |      |       |   |   |   |
|         |            |        |                          |      |      |      |       |   |   |   |
|         |            |        |                          |      |      |      |       |   |   |   |
|         | INDELS HLA | Custom |                          |      |      |      |       |   |   |   |
|         |            |        |                          |      |      |      |       |   |   |   |
| Cancel  |            |        |                          |      |      |      |       |   | 0 | k |

In the Custom tab, custom assays can be added.

| 3 Markers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - |   | х |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |   |   |
| 3A-10.1 🕱 🔿 🖉 JBex15 🕱 🔿 🔿                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |   |   |
| JA-11.0 🕱 🔾 🔾                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |   |   |
| JA-8.1 🕱 🔿 🔿                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |   |   |
| 0.0-AC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |   |   |
| 38-13.1 🕱 🔿 🔿                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |   |   |
| J8-14.1 🕱 🔿 🔿                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |   |   |
| 38-16.1 🕱 🔾 🔾                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |   |   |
| 38-17.0 🕱 🔾 🔾                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |   |   |
| J8-18.1 🕱 🔿 🔿                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |   |   |
| 38-19.2.0 🕱 🔾 🔿                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |   |   |
| J8-20.1 🗷 🔿 🔿                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |   |   |
| La seconda de la constante de la const |   |   |   |
| INDELS HLA Custom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |   |   |
| Cancel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   | 0 |   |
| Concer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |   |   |

Once the marker(s) have been assigned, click ok.

Now the markers are selectable for the sample in the Informative Markers window.

TRACE Analysis<sup>™</sup> Software will save this information, so it only has to be entered once for a given sample.

## Protocol

In order to perform a monitoring experiment with TRACE Analysis<sup>™</sup> Software, start typing the name of your Recipient Sample in the Sample Entry window. TRACE Analysis<sup>™</sup> Software will start searching for the record as you are entering the name. The name can also be chosen from the drop down menu which appears when you click in the sample entry box.

## The QTRACE<sup>®</sup> Analysis System

Once the Recipient Sample name is found and selected, the identifying information initially entered for the samples and the genotyping data results will appear.

(For samples wherein genotyping data was not determined using TRACE Analysis<sup>™</sup> Software, please see section on <u>Assigning Informative Markers</u>).



The Reference Sample(s) and its/their concentration(s) for a group of samples in the experiment must be defined. This is typically a pure sample of the recipient's DNA.

In the "Post Sample" entry window, a unique Sample ID must be entered in the Sample ID field.

A sample Date must be entered.

Check the Sample type which is being tested - Sample Types can be defined by the User in the

Preferences Menu.

Click on the name(s) of the Assays you wish to use for the experiment. Once all the information about the sample has been entered, click the "Add Quant Samples"

<sup>Quant</sup> button and the sample will be added to the plate.

The reactions for a particular recipient sample are grouped together. In the example below, all reactions are performed in triplicate with two informative markers.

You can toggle between coloring for the Sample View and the Assay View by pressing the appropriate small plate at the bottom of the window.

One View (see "Sample Layout view") shows the placement of Pure (pre-transfer) and Mixed Samples (Post-Transfer). Pre samples go in wells A1-A3, B1-B3 and C1-C3. Post samples go in A4-A6, B4-B6 and C4-C6.

Sample Layout view



The other view shows the placement of the Assays. The Reference Gene Assay is used in A1-A6 and H12. Assay 014 is used in B1-B6 and H11. Assay 016 is used in C1-C6 and H10

Assay Layout view

|   |                              | ~                         |                           |                              |                           |                             |   |   |   |            |            |               |              |
|---|------------------------------|---------------------------|---------------------------|------------------------------|---------------------------|-----------------------------|---|---|---|------------|------------|---------------|--------------|
|   | 1                            | 2                         | 3                         | 4                            | 5                         | 6                           | 7 | 8 | 9 | 10         | 11         | 12            | $\backslash$ |
| Α | Recipie<br>Recipie<br>RNaseF | Recipie                   | Recipie                   | Recipie<br>1st Moi<br>RNaseF | 1st Mo                    | Recipie<br>1st Mo<br>RNaseF |   |   |   |            |            |               |              |
| В | Recipie<br>Recipie<br>137    |                           | Recipie<br>Recipie<br>137 | Recipie<br>1st Mo<br>137     | Recipie<br>1st Mo<br>137  | Recipie<br>1st Mo<br>137    |   |   |   |            |            |               |              |
| C |                              | Recipie<br>Recipie<br>148 |                           |                              | Recipie<br>1st Moi<br>148 |                             |   |   |   |            |            |               | ſ            |
| D |                              |                           |                           |                              |                           |                             |   |   |   |            |            |               |              |
| E |                              |                           |                           |                              |                           |                             |   |   |   |            |            |               |              |
| F |                              |                           |                           |                              |                           |                             |   |   |   |            |            |               |              |
| G |                              |                           |                           |                              |                           |                             |   |   |   |            |            |               |              |
| н |                              |                           |                           |                              |                           |                             |   |   |   | NTC<br>148 | NTC<br>137 | NTC<br>RNaseF |              |
|   |                              |                           |                           |                              |                           |                             |   |   |   |            | _          | _             |              |
|   |                              |                           |                           |                              | _                         |                             |   |   |   |            | $\sim$     |               |              |

The reactions in Row H constitute No Template Controls (NTCs) and have deionized water added in place of the sample.

Proceed to add more experiments to fill the plate as per you needs.

Once all samples have been added to your plate, press the "Export Setup to PCR" button. Browse to the location where you want the file saved and name it as you wish. This file can then be imported into your qPCR machine's QTRACE<sup>®</sup> template to execute the qPCR analysis. Once the file is saved, TRACE Analysis<sup>™</sup> generates a protocol, based on the experimental inputs and the settings in the preferences menu.

### The DigitalTRACE<sup>™</sup> Analysis System

For Post samples wherein genotyping data was either determined using qPCR or not determined using TRACE Analysis<sup>™</sup> Software, please see section on <u>Assigning Informative Markers</u>.

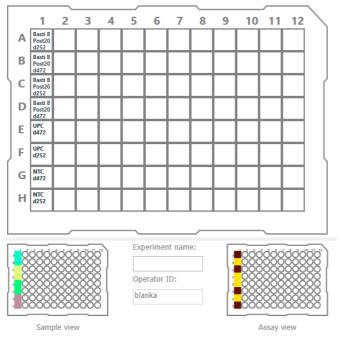
In order to perform a Monitoring experiment with TRACE Analysis<sup>™</sup> Software using both the QIAcuity or Biorad dPCR instrument, select the name of your Recipient Sample in the Sample Entry window from the drop-down menu.

Once the Recipient Sample name is found and selected, choose from a pop-up window to use monitoring plate format which must be selected before in the Preferences. The selected sample's identifying information initially entered will appear.

Type in the Post sample information:

- A unique Sample ID must be entered in the Sample ID field.
- A sample Date must be entered.
- Check the Sample type which is being tested Sample Types can be defined by the User in the Preferences menu.
- Click the plus sign next to the "Add Sample" tab

In the Informative Assays window, choose the loci to be tested by selecting assays from the list based on the screening test results.


Once all the information about the sample has been entered, click the "Add Quant Samples"

button and the sample will be added to the plate.

A negative control (NTC) is automatically added to the plate layout. A positive control (UPC) is added if it is enabled in the dPCR Data and Reports tab in the <u>Preferences</u>. The use of UPC is optional.

You can toggle between coloring for the Sample View and the Assay View by pressing the appropriate small plate at the bottom of the window. One View shows the placement of monitoring and control samples. The other view shows the placement of the Assays.

Monitoring Samples are arranged into groups by TRACE Analysis<sup>™</sup> Software, based on the preferences set for the monitoring machine. You can drag the wells to rearrange the samples within the plate. In this case, both controls were placed to the first column.



Proceed to add more samples to fill the plate as per your needs.

Once all samples have been added to your plate, press the "Export Setup to PCR" button. Browse to the location where you want the file saved and name it as you wish. This file can then be imported into your dPCR machine's template file to execute the dPCR analysis.

Once the file is saved, TRACE Analysis<sup>™</sup> Software generates a protocol, based on the experimental inputs and the settings in the preferences menu.

### **Monitoring Test Protocol - QIAcuity**

The following protocol is an example output from TRACE Analysis<sup>™</sup> Software for a Monitoring test using QIAcuity dPCR:

| 1.                 | Set u                                       | p all reactions in                                                                                                           | a pre-PCR lab, unde                                                                                                                     | r ambient condition                                                    | s without ice.                                         |                                                 |                          |                                       |  |
|--------------------|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------|--------------------------|---------------------------------------|--|
| 2.                 | Brief                                       | ly vortex and cent                                                                                                           | rifuge all tubes befo                                                                                                                   | re opening.                                                            |                                                        |                                                 |                          |                                       |  |
| 3.                 | Prep                                        | are DNA dilutions                                                                                                            | as specified in Table                                                                                                                   | 1:                                                                     |                                                        |                                                 |                          |                                       |  |
|                    |                                             |                                                                                                                              |                                                                                                                                         |                                                                        |                                                        |                                                 |                          |                                       |  |
|                    | _                                           |                                                                                                                              |                                                                                                                                         | Table 1. DNA di                                                        |                                                        |                                                 |                          |                                       |  |
|                    | No.                                         | Name                                                                                                                         | Sample ID                                                                                                                               | Concentration                                                          | Sample                                                 | Water                                           | Total                    | Amount pe                             |  |
|                    |                                             |                                                                                                                              |                                                                                                                                         |                                                                        | Volume                                                 | Volume                                          | Volume                   | Reaction                              |  |
|                    | 1                                           | Post Sample                                                                                                                  | Post_test                                                                                                                               | 26 ng/µl                                                               | 12,69 µl                                               | 48,91 µl                                        | 61,60 µl                 | 150 nj                                |  |
|                    | 2                                           | Post Sample                                                                                                                  | Post2_test                                                                                                                              | 41 ng/μl                                                               | 8,05 µl                                                | 53,55 µl                                        | 61,60 µl                 | 150 n                                 |  |
|                    |                                             |                                                                                                                              |                                                                                                                                         |                                                                        |                                                        |                                                 |                          |                                       |  |
| 4.                 | Prep                                        | are for chosen inf                                                                                                           | ormative dPCR Assa                                                                                                                      | the following mixtu                                                    | re:                                                    |                                                 |                          |                                       |  |
|                    |                                             |                                                                                                                              |                                                                                                                                         |                                                                        |                                                        |                                                 |                          |                                       |  |
|                    | Table 2. Master Mix + dPCR Assay mixture    |                                                                                                                              |                                                                                                                                         |                                                                        |                                                        |                                                 |                          |                                       |  |
|                    | Assa                                        | y Mix                                                                                                                        |                                                                                                                                         | dPCR 20x assay                                                         | Total Volume                                           |                                                 |                          |                                       |  |
| Master Mix mix [µ] |                                             |                                                                                                                              |                                                                                                                                         |                                                                        |                                                        |                                                 |                          |                                       |  |
|                    | d359                                        | )                                                                                                                            | 46,00 µl                                                                                                                                | 9,20 µl                                                                | 55,20 µl                                               |                                                 |                          |                                       |  |
|                    | d626                                        | ;                                                                                                                            | 46,00 μl                                                                                                                                | 9,20 µl                                                                | 55,20 µl                                               |                                                 |                          |                                       |  |
| 5.                 | IMP                                         | ORTANT! Vortex a                                                                                                             | it least 5 seconds an                                                                                                                   | d spin briefly each p                                                  | repared Maste                                          | r Mix + dPCF                                    | R Assay mixto            | ire.                                  |  |
|                    |                                             |                                                                                                                              |                                                                                                                                         |                                                                        |                                                        |                                                 |                          |                                       |  |
| 6.                 |                                             |                                                                                                                              |                                                                                                                                         | lix + dPCR Assay Mix                                                   | to a 96-well pla                                       | ite as define                                   | d in TRACE A             | nalysis™                              |  |
|                    | Softy                                       | vare's Assay Layoi                                                                                                           |                                                                                                                                         |                                                                        |                                                        |                                                 |                          |                                       |  |
|                    |                                             |                                                                                                                              |                                                                                                                                         |                                                                        |                                                        |                                                 | t Miour Mibo             | re NTC and                            |  |
| 7.                 | Add                                         | 1 A A                                                                                                                        | mple DNA dilution a                                                                                                                     |                                                                        |                                                        |                                                 |                          |                                       |  |
| 7.                 | Add<br>UPC                                  | are indicated add                                                                                                            | 30,8 µl water for NT                                                                                                                    | C and 30,8 µl from U                                                   | niversal Positiv                                       | e Control for                                   | UPC.                     |                                       |  |
|                    | Add<br>UPC                                  | are indicated add                                                                                                            | 30,8 µl water for NT                                                                                                                    |                                                                        | niversal Positiv                                       | e Control for                                   | UPC.                     |                                       |  |
|                    | Add<br>UPC                                  | are indicated add<br>DRTANT! Vortex a                                                                                        | 30,8 µl water for NT                                                                                                                    | C and 30,8 μl from U<br>he 96-well plate to n                          | niversal Positiv                                       | e Control for                                   | UPC.                     |                                       |  |
| 8.                 | Add<br>UPC<br>IMPC<br>well                  | are indicated add<br>DRTANT! Vortex a<br>plate briefly using                                                                 | 30,8 μl water for NT<br>it least 15 seconds t<br>g a microcentrifuge.                                                                   | C and 30,8 μl from U<br>he 96-well plate to n                          | niversal Positiv                                       | e Control for<br>s of each rea                  | UPC.<br>action. Centri   | ifuge the 96-                         |  |
| 8.                 | Add<br>UPC<br>IMPC<br>well<br>Trans         | are indicated add<br>DRTANT! Vortex a<br>plate briefly using<br>sfer 40 µl of each                                           | 30,8 μl water for NT<br>it least 15 seconds t<br>g a microcentrifuge.                                                                   | C and 30,8 µl from U<br>he 96-well plate to n<br>nix into a Nanoplate. | niversal Positiv                                       | e Control for<br>s of each rea                  | UPC.<br>action. Centri   | ifuge the 96-                         |  |
| <b>8.</b><br>9.    | Add<br>UPC<br>IMPC<br>well<br>Trans<br>Load | are indicated add<br>DRTANT! Vortex a<br>plate briefly using<br>sfer 40 µl of each                                           | 30,8 μl water for NT<br>it least 15 seconds t<br>g a microcentrifuge.<br>prepared reaction m<br>to the QIAcuity digit                   | C and 30,8 µl from U<br>he 96-well plate to n<br>nix into a Nanoplate. | niversal Positiv                                       | e Control for<br>s of each rea                  | UPC.<br>action. Centri   | ifuge the 96-                         |  |
| 8.<br>9.<br>10.    | Add<br>UPC<br>IMPC<br>well<br>Trans<br>Load | are indicated add<br>DRTANT! Vortex a<br>plate briefly using<br>sfer 40 µl of each<br>the Nanoplate in<br>ch the QIAcuity So | 30,8 µl water for NT<br>it least 15 seconds t<br>g a microcentrifuge.<br>prepared reaction m<br>to the QIAcuity digit<br>oftware Suite. | C and 30,8 µl from U<br>he 96-well plate to n<br>nix into a Nanoplate. | Iniversal Positiv<br>nix the content<br>Seal the Nanop | e Control for<br>s of each rea<br>late with the | r UPC.<br>action. Centri | <b>ifuge the 96-</b><br>plate sealer. |  |

### Experiment Setup in QIAcuity Suite Software, v2.5

Create a new QIAcuity Plate by selecting "New Plate".

Similarly as for the Genotyping, load a template by selecting "Plate templates..." and import the appropriate DigitalTRACE Monitoring template.

Press Save Plate. The new plate will appear in the main window of the QIAcuity Software Suite.



Click on the plate name to open the plate configuration procedure. Type in a new plate name and save the changes.

Import the Sample Setup sheet (.csv) generated by TRACE Analysis<sup>™</sup> Software by selecting "Plate layout" tab and "CSV import/export".

Select "Import from CSV".

| Plate List |       |   |   | Telp                                  |        |
|------------|-------|---|---|---------------------------------------|--------|
|            |       |   |   | <ul> <li>CSV import/export</li> </ul> |        |
|            | 1     | 2 | 3 | Active selection:                     |        |
|            | A 🐌 🦲 |   |   | Selected wells: 0                     |        |
|            | • 🐌 🦳 |   |   |                                       |        |
|            | c 🐌 🦳 |   |   |                                       |        |
|            | • 🐌 🦳 |   |   |                                       |        |
|            | · 🐌 🦳 |   |   |                                       |        |
|            | F 🐌 🦳 |   |   |                                       |        |
|            | ۰ 🐌   |   |   |                                       |        |
|            | н 🐌 🦳 |   |   |                                       |        |
|            |       |   |   | CSV successfully imported.            |        |
|            |       |   |   | C Sove changes                        | () Dor |

Inspect if all your selected samples are represented on the Plate figure. Select "Done" to finish the setup. Start the run.

### Thermal Cycling and Imaging Protocol for QIAcuity

The DigitalTRACE<sup>™</sup> System will deliver optimal results when the following thermal profile is used in dPCR:

| Number of cycles | Temperature | Time  |
|------------------|-------------|-------|
| 1                | 95 °C       | 3 min |
|                  | 95 °C       | 15 s  |
| 40               | 60 °C       | 30 s  |

| Channel | Exposure duration | Gain |
|---------|-------------------|------|
| Green   | 500 ms            | 6    |
| Yellow  | 500 ms            | 6    |
| Orange  | Off               | Off  |
| Red     | Off               | Off  |
| Crimson | Off               | Off  |

After the QIAcuity run has finished, check in the QIAcuity Software Suite if the automatic thresholds are correct. Adjust the thresholds manually if needed.

Select all wells on the plate and analyze per target (not per channel), export data by selecting Export to CSV.

#### **Monitoring Test Protocol - Biorad**

The following protocol is an example output from TRACE Analysis<sup>™</sup> Software for a Monitoring test using Biorad ddPCR:

|                                                                                                                                                       | Set up all reactions in a pre-PCR lab, under ambient conditions without ice.                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                           |                                                                                                                                                          |                                                                 |                                                                 |           |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|-----------|--|--|
| 2.                                                                                                                                                    | Briefly vortex an                                                                                                                                                                                                                                                                                                          | d centrifuge all tubes b                                                                                                                                                                                                                                                                                                                                  | efore opening.                                                                                                                                                                                                                                            |                                                                                                                                                          |                                                                 |                                                                 |           |  |  |
| 3.                                                                                                                                                    | Prepare DNA dil                                                                                                                                                                                                                                                                                                            | utions as specified in Ta                                                                                                                                                                                                                                                                                                                                 | ble 1:                                                                                                                                                                                                                                                    |                                                                                                                                                          |                                                                 |                                                                 |           |  |  |
|                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                           |                                                                                                                                                          |                                                                 |                                                                 |           |  |  |
|                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                           | Table 1. DNA dilu                                                                                                                                                                                                                                         | _                                                                                                                                                        |                                                                 |                                                                 |           |  |  |
|                                                                                                                                                       | Name                                                                                                                                                                                                                                                                                                                       | Sample ID                                                                                                                                                                                                                                                                                                                                                 | Concentration                                                                                                                                                                                                                                             | Sample                                                                                                                                                   | Water                                                           | Total                                                           | Amount pe |  |  |
|                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                           | Volume                                                                                                                                                   | Volume                                                          | Volume                                                          | Reactio   |  |  |
| 1                                                                                                                                                     | Basti Bob                                                                                                                                                                                                                                                                                                                  | Post201                                                                                                                                                                                                                                                                                                                                                   | 20 ng/µl                                                                                                                                                                                                                                                  | 17,25 µl                                                                                                                                                 | 5,52 µl                                                         | 22,77 µl                                                        | 150 n     |  |  |
| 2                                                                                                                                                     | Basti Bob                                                                                                                                                                                                                                                                                                                  | Post202                                                                                                                                                                                                                                                                                                                                                   | 20 ng/µl                                                                                                                                                                                                                                                  | 17,25 µl                                                                                                                                                 | 5,52 µl                                                         | 22,77 µl                                                        | 150 n     |  |  |
| 4.                                                                                                                                                    | Prepare for chos                                                                                                                                                                                                                                                                                                           | en informative dPCR As                                                                                                                                                                                                                                                                                                                                    | say the following m                                                                                                                                                                                                                                       | ixture:                                                                                                                                                  |                                                                 |                                                                 |           |  |  |
|                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                           |                                                                                                                                                          |                                                                 |                                                                 |           |  |  |
|                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                           | dPCR Supermix + dF                                                                                                                                                                                                                                        |                                                                                                                                                          |                                                                 |                                                                 |           |  |  |
|                                                                                                                                                       | Assay                                                                                                                                                                                                                                                                                                                      | ddPCR supermix                                                                                                                                                                                                                                                                                                                                            | dPCR assay [uL]                                                                                                                                                                                                                                           | Total V                                                                                                                                                  | /olume                                                          |                                                                 |           |  |  |
|                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                            | for probes (no                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                           |                                                                                                                                                          |                                                                 |                                                                 |           |  |  |
|                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                            | dUTPs) [uL]                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                           |                                                                                                                                                          |                                                                 |                                                                 |           |  |  |
|                                                                                                                                                       | d252                                                                                                                                                                                                                                                                                                                       | 46,00 μl                                                                                                                                                                                                                                                                                                                                                  | 4,60 µl                                                                                                                                                                                                                                                   | 5                                                                                                                                                        | 0,60 µl                                                         |                                                                 |           |  |  |
|                                                                                                                                                       | d472                                                                                                                                                                                                                                                                                                                       | 46,00 μl                                                                                                                                                                                                                                                                                                                                                  | 4,60 µl                                                                                                                                                                                                                                                   | 5                                                                                                                                                        | 0,60 µl                                                         |                                                                 |           |  |  |
| 5.                                                                                                                                                    | Analysis <sup>™</sup> Softwa                                                                                                                                                                                                                                                                                               | are's Assay Layout view                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                           |                                                                                                                                                          |                                                                 |                                                                 |           |  |  |
|                                                                                                                                                       | Analysis <sup>™</sup> Softwa                                                                                                                                                                                                                                                                                               | are's Assay Layout view<br>th Sample DNA dilution                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                           |                                                                                                                                                          |                                                                 |                                                                 |           |  |  |
| 6.                                                                                                                                                    | Analysis™ Softwa<br>Add 9.9 μl of ead<br>Software's Layou                                                                                                                                                                                                                                                                  | are's Assay Layout view<br>th Sample DNA dilution                                                                                                                                                                                                                                                                                                         | and water for NTC                                                                                                                                                                                                                                         | wells as indic                                                                                                                                           | cated by TRAC                                                   | CE Analysis™                                                    | tubes     |  |  |
| 6.                                                                                                                                                    | Analysis™ Softwa<br>Add 9.9 μl of ead<br>Software's Layou                                                                                                                                                                                                                                                                  | are's Assay Layout view<br>ch Sample DNA dilution<br>ut View.<br>ortex the 8 strip tube to                                                                                                                                                                                                                                                                | and water for NTC                                                                                                                                                                                                                                         | wells as indic                                                                                                                                           | cated by TRAC                                                   | CE Analysis™                                                    | tubes     |  |  |
| 6.                                                                                                                                                    | Analysis <sup>™</sup> Softwa<br>Add 9.9 µl of ead<br>Software's Layou<br>IMPORTANT! Vo<br>briefly using a m                                                                                                                                                                                                                | are's Assay Layout view<br>ch Sample DNA dilution<br>ut View.<br>ortex the 8 strip tube to                                                                                                                                                                                                                                                                | and water for NTC                                                                                                                                                                                                                                         | wells as indic                                                                                                                                           | cated by TRAC                                                   | CE Analysis™                                                    | tubes     |  |  |
| 6.<br>7.                                                                                                                                              | Analysis <sup>™</sup> Softwa<br>Add 9.9 µl of eac<br>Software's Layou<br>IMPORTANT! Vo<br>briefly using a m<br>!!!The following                                                                                                                                                                                            | are's Assay Layout view<br>ch Sample DNA dilution<br>ut View.<br>ortex the 8 strip tube to<br>nicrocentrifuge.                                                                                                                                                                                                                                            | and water for NTC<br>mix the contents o<br>only for manual dra                                                                                                                                                                                            | wells as indic<br>of each react<br>oplet genera                                                                                                          | cated by TRAG<br>tion. Centrifu<br>tor users:                   | CE Analysis™<br>ge the 8 strip                                  | tubes     |  |  |
| 6.<br>7.<br>8.<br>9.                                                                                                                                  | Analysis <sup>™</sup> Softwa<br>Add 9.9 µl of ead<br>Software's Layou<br>IMPORTANT! Vo<br>briefly using a m<br>!!!The following<br>Transfer 20 µl of                                                                                                                                                                       | are's Assay Layout view<br>ch Sample DNA dilution<br>ut View.<br>ortex the 8 strip tube to<br>nicrocentrifuge.<br>steps from 9 to 14 are                                                                                                                                                                                                                  | and water for NTC<br>mix the contents of<br>only for manual dru<br>to the sample wells                                                                                                                                                                    | wells as indic<br>of each react<br>oplet genera<br>(middle row                                                                                           | cated by TRAC<br>tion. Centrifu<br>itor users:<br>v) of the DG8 | CE Analysis™<br>ge the 8 strip                                  | tubes     |  |  |
| 6.<br>7.<br>8.<br>9.<br>10.                                                                                                                           | Analysis <sup>™</sup> Softwi<br>Add 9.9 µl of ead<br>Software's Layou<br>IMPORTANT! Vo<br>briefly using a m<br>!!!The following<br>Transfer 20 µl of<br>Add 70 µl of dro                                                                                                                                                   | are's Assay Layout view<br>th Sample DNA dilution<br>ut View.<br>ortex the 8 strip tube to<br>hicrocentrifuge.<br>steps from 9 to 14 are<br>each prepared sample                                                                                                                                                                                          | and water for NTC on the contents of only for manual dra to the sample wells ach oil well of the Do                                                                                                                                                       | wells as indic<br>of each react<br>oplet genera<br>(middle row<br>G8 cartridge                                                                           | cated by TRAC<br>tion. Centrifu<br>itor users:<br>v) of the DG8 | CE Analysis™<br>ge the 8 strip                                  | tubes     |  |  |
| 6.<br>7.<br>8.<br>9.<br>10.<br>11.                                                                                                                    | Analysis <sup>™</sup> Softwi<br>Add 9.9 µl of ead<br>Software's Layou<br>IMPORTANT! Vo<br>briefly using a m<br>!!!The following<br>Transfer 20 µl of<br>Add 70 µl of dro<br>Hook the gasket                                                                                                                                | are's Assay Layout view<br>ch Sample DNA dilution<br>ut View.<br><b>ortex the 8 strip tube to</b><br><b>nicrocentrifuge.</b><br><b>steps from 9 to 14 are</b><br><i>i</i> each prepared sample<br>plet generation oil to each                                                                                                                             | and water for NTC<br>o mix the contents of<br>only for manual dru<br>to the sample wells<br>ach oil well of the Di<br>er using the holes o                                                                                                                | wells as indic<br>of each react<br>oplet genera<br>(middle row<br>G8 cartridge                                                                           | cated by TRAC<br>tion. Centrifu<br>itor users:<br>v) of the DG8 | CE Analysis™<br>ge the 8 strip                                  | tubes     |  |  |
| 6.<br>7.<br>8.<br>9.<br>10.<br>11.<br>12.                                                                                                             | Analysis <sup>™</sup> Softwi<br>Add 9.9 µl of ead<br>Software's Layou<br>IMPORTANT! Vo<br>briefly using a m<br>!!!The following<br>Transfer 20 µl of<br>Add 70 µl of droj<br>Hook the gasket<br>Load the cartridg                                                                                                          | are's Assay Layout view<br>ch Sample DNA dilution<br>ut View.<br><b>ortex the 8 strip tube to</b><br><b>nicrocentrifuge.</b><br><b>steps from 9 to 14 are</b><br>each prepared sample<br>plet generation oil to er<br>over the cartridge hold                                                                                                             | and water for NTC on mix the contents of only for manual drives to the sample wells ach oil well of the Difer using the holes of generator.                                                                                                               | wells as indic<br>of each react<br>oplet genera<br>(middle row<br>G8 cartridge<br>n both sides                                                           | cated by TRAC<br>tion. Centrifu<br>ntor users:<br>v) of the DG8 | CE Analysis™<br>ge the 8 strip<br>cartridge.                    |           |  |  |
| 6.<br>7.<br>8.<br>9.<br>10.<br>11.<br>12.<br>13.                                                                                                      | Analysis <sup>™</sup> Softwi<br>Add 9.9 µl of ead<br>Software's Layou<br>IMPORTANT! Vo<br>briefly using a m<br>!!!The following<br>Transfer 20 µl of<br>Add 70 µl of droj<br>Hook the gasket<br>Load the cartridg<br>When droplet ge                                                                                       | are's Assay Layout view<br>th Sample DNA dilution<br>ut View.<br>ortex the 8 strip tube to<br>icrocentrifuge.<br>steps from 9 to 14 are<br>each prepared sample<br>plet generation oil to ea<br>over the cartridge hold<br>ge in the QX200 droplet                                                                                                        | and water for NTC on mix the contents of only for manual drives of the sample wells such oil well of the Dire using the holes of generator.                                                                                                               | wells as indic<br>of each react<br>oplet genera<br>(middle row<br>G8 cartridge<br>n both sides<br>ole gasket fro                                         | cated by TRAC<br>tion. Centrifu<br>ator users:<br>v) of the DG8 | CE Analysis™<br>ge the 8 strip<br>cartridge.<br>r and discard i |           |  |  |
| <ol> <li>6.</li> <li>7.</li> <li>8.</li> <li>9.</li> <li>10.</li> <li>11.</li> <li>12.</li> <li>13.</li> <li>14.</li> </ol>                           | Analysis <sup>36</sup> Software's Layou<br>Add 9.9 µl of ead<br>Software's Layou<br><b>IMPORTANT! Voc</b><br><b>briefly using a m</b><br><b>!!!The following</b><br>Transfer 20 µl of<br>Add 70 µl of drop<br>Hook the gasket<br>Load the cartridg<br>When droplet gg<br>Pipet 40 µl of thm                                | are's Assay Layout view<br>th Sample DNA dilution<br>it View.<br>view.<br>the 8 strip tube to<br>incrocentrifuge.<br>steps from 9 to 14 are<br>each prepared sample<br>plet generation oil to ea<br>over the cartridge hold<br>ge in the QX200 droplet<br>eneration is complete, r.                                                                       | and water for NTC on<br>mix the contents of<br>only for manual drive<br>to the sample wells<br>ach oil well of the Di<br>er using the holes of<br>generator.<br>emove the disposat<br>ets into a single colu                                              | wells as indic<br>of each react<br>oplet genera<br>(middle row<br>G8 cartridge,<br>n both sides<br>ole gasket fro<br>mn of a 96-v                        | cated by TRAC<br>cion. Centrifu<br>ator users:<br>v) of the DG8 | CE Analysis™<br>ge the 8 strip<br>cartridge.<br>r and discard i | t.        |  |  |
| <ol> <li>6.</li> <li>7.</li> <li>8.</li> <li>9.</li> <li>10.</li> <li>11.</li> <li>12.</li> <li>13.</li> <li>14.</li> </ol>                           | Analysis <sup>36</sup> Software's Layou<br>Add 9.9 µl of ead<br>Software's Layou<br><b>IMPORTANT! Voc</b><br><b>briefly using a m</b><br><b>!!!The following</b><br>Transfer 20 µl of<br>Add 70 µl of drop<br>Hook the gasket<br>Load the cartridg<br>When droplet gg<br>Pipet 40 µl of thm                                | are's Assay Layout view<br>th Sample DNA dilution<br>it View.<br>ortex the 8 strip tube to<br>icrocentrifuge.<br>steps from 9 to 14 are<br>each prepared sample<br>plet generation oil to er<br>over the cartridge hold<br>ge in the QX200 droplet<br>eneration is complete, r.<br>e contents of the drople<br>te with foil plate seals t                 | and water for NTC on<br>mix the contents of<br>only for manual drive<br>to the sample wells<br>ach oil well of the Di<br>er using the holes of<br>generator.<br>emove the disposat<br>ets into a single colu                                              | wells as indic<br>of each react<br>oplet genera<br>(middle row<br>G8 cartridge,<br>n both sides<br>ole gasket fro<br>mn of a 96-v                        | cated by TRAC<br>cion. Centrifu<br>ator users:<br>v) of the DG8 | CE Analysis™<br>ge the 8 strip<br>cartridge.<br>r and discard i | t.        |  |  |
| <ol> <li>6.</li> <li>7.</li> <li>8.</li> <li>9.</li> <li>10.</li> <li>11.</li> <li>12.</li> <li>13.</li> <li>14.</li> <li>15.</li> <li>16.</li> </ol> | Analysis <sup>35</sup> Softwa<br>Add 3-9 µl of eac<br>Software's Layou<br><b>IMPORTANT!</b> Vo<br><b>briefly using a m</b><br><b>!!!The following</b><br>Hook the gasket<br>Load the cartrid <u>i</u><br>When droplet gg<br>Pipet 40 µl of the<br>Seal the PCR plate<br>in the QX200 droc<br>Place the plate in            | are's Assay Layout view<br>th sample DNA dilution<br>to View.<br>vrtex the 8 strip tube to<br>incroentrifuge.<br>steps from 9 to 14 are<br>each prepared sample<br>plet generation oil to e<br>over the cartifide hold<br>ge in the QX200 droplet<br>eneration is complete, ri-<br>contents of the drople<br>te with foil plate seals t<br>spolet reader. | and water for NTC on<br>mix the contents of<br>only for manual dri<br>to the sample wells<br>be oil well of the D<br>er using the holes or<br>generator.<br>emove the disposat<br>ets into a single colu<br>hat are compatible<br>or PCR amplification    | wells as indic<br>oplet genera<br>(middle row<br>G8 cartridge<br>n both sides<br>ole gasket fro<br>mn of a 96-v<br>with the PX1<br>n.                    | cated by TRAC<br>cion. Centrifu<br>ator users:<br>v) of the DG8 | CE Analysis™<br>ge the 8 strip<br>cartridge.<br>r and discard i | t.        |  |  |
| 6.<br>7.<br>8.<br>9.<br>10.<br>11.<br>12.<br>13.<br>14.<br>15.<br>16.<br>17.                                                                          | Analysis <sup>110</sup> Softw.<br>Add 3-9 µl of eaa<br>Software's Layou<br>IMPORTANT! Vo<br>briefly using a m<br>IIIThe following<br>Transfer 20 µl of<br>Add 70 µl of dror<br>Hook the gasket<br>Load the cartridg<br>When droplet ga<br>Pipet 40 µl of th<br>Seal the PCR plai<br>in the QX200 dri<br>Place the plate ai | are's Assay Layout view<br>th Sample DNA dilution to<br>view. The the Strip tube to<br>increentrifuge.<br>steps from 9 to 14 are<br>each prepared sample<br>teget generation oil to e:<br>over the cartridge hold<br>ge in the QX200 droplet<br>generation is complete, re-<br>contents of the droplet<br>te with hold plate seals to<br>splet reader.    | and water for NTC '<br>mix the contents of<br>only for manual dr<br>to the sample wells<br>ch oil well of the D<br>or generator.<br>emove the disposat<br>tes into a single colu<br>tes into a single colu<br>or PCR amplification<br>XX200 droplet reade | wells as indic<br>of each react<br>oplet genera<br>(middle row<br>G8 cartridge<br>in both sides<br>ole gasket fro<br>min of a 96-w<br>with the PX1<br>n. | cated by TRAC<br>ion. Centrifu<br>itor users:<br>v) of the DG8  | CE Analysis™<br>ge the 8 strip<br>cartridge.<br>r and discard i | t.        |  |  |
| 6.<br>7.<br>8.<br>9.<br>10.<br>11.<br>12.<br>13.<br>14.<br>15.<br>16.<br>17.                                                                          | Analysis <sup>110</sup> Softw.<br>Add 3-9 µl of eaa<br>Software's Layou<br>IMPORTANT! Vo<br>briefly using a m<br>IIIThe following<br>Transfer 20 µl of<br>Add 70 µl of dror<br>Hook the gasket<br>Load the cartridg<br>When droplet ga<br>Pipet 40 µl of th<br>Seal the PCR plai<br>in the QX200 dri<br>Place the plate ai | are's Assay Layout view<br>th sample DNA dilution<br>to View.<br>vrtex the 8 strip tube to<br>incroentrifuge.<br>steps from 9 to 14 are<br>each prepared sample<br>plet generation oil to e<br>over the cartifide hold<br>ge in the QX200 droplet<br>eneration is complete, ri-<br>contents of the drople<br>te with foil plate seals t<br>spolet reader. | and water for NTC '<br>mix the contents of<br>only for manual dr<br>to the sample wells<br>ch oil well of the D<br>or generator.<br>emove the disposat<br>tes into a single colu<br>tes into a single colu<br>or PCR amplification<br>XX200 droplet reade | wells as indic<br>of each react<br>oplet genera<br>(middle row<br>G8 cartridge<br>in both sides<br>ole gasket fro<br>min of a 96-w<br>with the PX1<br>n. | cated by TRAC<br>ion. Centrifu<br>itor users:<br>v) of the DG8  | CE Analysis™<br>ge the 8 strip<br>cartridge.<br>r and discard i | t.        |  |  |

Use the same cycling parameters as for a Genotyping test:

| Number of cycles | Temperature | Time   | Ramp Rate |
|------------------|-------------|--------|-----------|
| 1                | 95 °C       | 10 min | 2 °C/s    |
| 40               | 94 °C       | 30 s   | 2 °C/s    |
| 40               | 59 °C       | 60 s   | 2 °C/s    |
| 1                | 98 °C       | 10 min | 2 °C/s    |

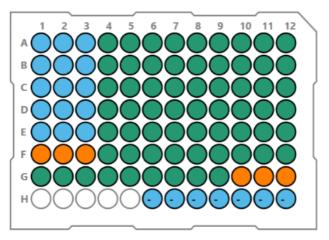
The droplet reading process is the same as for the Genotyping test. Start the droplet reading run.

After the reading process has finished, check in the QuantaSoft Software if the automatic thresholds are correct. Adjust the thresholds manually if needed. Select all wells on the plate and export data by selecting Export CSV.

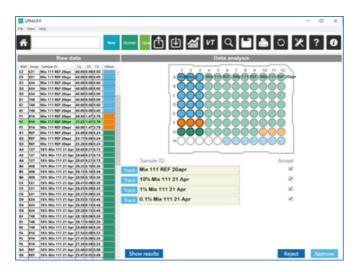
## **Monitoring Data Analysis and Report**

Import qPCR data by clicking the "Import PCR Data" button, and browse to the location of your exported qPCR data file and select it.

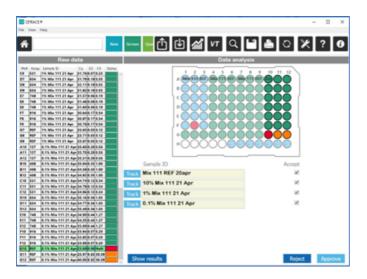
## The QTRACE<sup>®</sup> Analysis System


TRACE Analysis<sup>™</sup> Software uses a green/amber/red color coding for well highlighting.




Green wells always mean positive wells (Go). Red wells are data which has been rejected, manually or automatically (Stop). Amber wells highlight the need for data inspection (Caution).

Light blue wells **O**remain as negative wells.


Monitoring plates contain green and light blue colors, indicating true positives or negatives. Amber colored wells highlight replicates which violate user-defined replicate highlighting rules, based on %CV, SD or Cq Range.



Replicate wells in Monitoring which violate the replicate highlighting preferences set by the user will first be highlighted in Amber.



The user can then Accept/Reject individual wells in an attempt to conform to the acceptable variance allowed. Rejected wells turn Red and the remaining wells will either turn green, light blue or remain Amber - if the Rejected well does not cause the remaining replicates to meet acceptable variance.

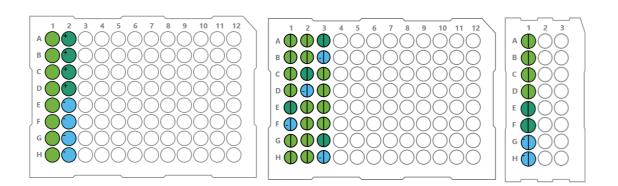


Once all the data has been inspected, pressing the "Calculate" <sup>Calculate</sup> button allows TRACE Analysis<sup>™</sup> to perform the calculations necessary to determine the proportion of the mixed sample which contains the sample of interest.

The percentage of the total sample which contains the sample is displayed in the right hand Result window.



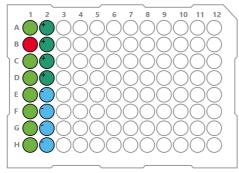
As more data is collected for a particular sample over time, TRACE Analysis<sup>™</sup> Software provides a longitudinal view.


To view the composite set of data for an individual sample, press the "Overview" 🌌 button.

Pushing the Overview button takes you to a screen showing all the information input for a particular group of samples as well as all of their genotyping and monitoring data.

| TRACE Analysis**                                                                                                                                        |                                                                                                         |        |               |        |      |                      |        |            |          |           |           |          | - 1                    |          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------|---------------|--------|------|----------------------|--------|------------|----------|-----------|-----------|----------|------------------------|----------|
| View Help                                                                                                                                               |                                                                                                         |        |               |        |      |                      |        |            |          |           |           |          |                        |          |
| ~                                                                                                                                                       |                                                                                                         |        |               |        |      | 1                    | at la  | n la la    | 107      |           |           |          | <b>N</b> 2             |          |
| ~                                                                                                                                                       |                                                                                                         | New St | veen Quant    |        |      |                      | Ľ      | ¥]∭        |          | 4         | ш         | <u> </u> | ℀ ?                    | 14       |
| Re                                                                                                                                                      | ecipient                                                                                                |        | Genotypin     | a      |      |                      |        |            | Mon      | itoring   |           |          |                        |          |
| lecipient First Name                                                                                                                                    | Luke                                                                                                    | Harker | Chr. location | InfoCq | ACc. |                      |        |            |          |           |           |          |                        |          |
| ecipient Last Name                                                                                                                                      | Skywalker                                                                                               | 504    | 17p           |        |      | Sample 1             | Type 0 | late       | Target   | Chr.      | ddCq      | DNA (%)  | Reference PI           | in       |
|                                                                                                                                                         | L\$123                                                                                                  | 504    | 17p           |        |      |                      |        | 1-12-2020  | 504      | 17p       | 9.88      | 0.11     | PreTx DNA              | Lui      |
| lecipient ID                                                                                                                                            | L8123                                                                                                   |        |               |        |      |                      |        | 1-12-2020  | 504      | 17p       | 6.61      | 1.02     | PreTx DNA              | 5.0      |
| ample ID                                                                                                                                                | PreTx DNA                                                                                               | 721    | Xq            |        | 0    |                      |        | 1-12-2020  | 504      | 17p<br>Xq | 3.39      | 9.54     | Prets DNA<br>Prets DNA | Lu<br>Lu |
|                                                                                                                                                         | 100                                                                                                     | 721    | Xq            |        | 0    |                      |        | 1-12-2020  | 721      | Xq        | 3.28      | 10.27    | Prets DNA              |          |
| oncentration ng/ul                                                                                                                                      | 100                                                                                                     | 854    | 120           |        |      |                      |        | 1 13 3555  | 721      | ×-        | 0.74      | 0.13     | Burger Para            |          |
|                                                                                                                                                         |                                                                                                         |        |               |        |      |                      |        |            |          |           |           |          |                        |          |
| ute of Birth                                                                                                                                            | 31/12/2020                                                                                              | 854    | 120           |        |      |                      | Los    | noitudinal | chimeria | cm resu   | It of Lui | ke Skow  | alker                  |          |
|                                                                                                                                                         |                                                                                                         |        | 124           |        | 0    | 100 -                | Lor    | ngitudinal | chimeris | sm resu   | It of Lu  | ke Skywa | alker                  | _        |
| ute of Transplant                                                                                                                                       | 31/12/2020                                                                                              |        | 129           |        | •    | 100                  | Loi    | ngitudinal | chimeris | sm resu   | lt of Lu  | •        | DNA S04, PreTx D       |          |
| ute of Transplant                                                                                                                                       |                                                                                                         |        | 124           |        | •    | 100                  | Lor    | ngitudinal | chimeri  | sm resu   | lt of Lu  | •        |                        |          |
| ate of Transplant                                                                                                                                       | 31/12/2020                                                                                              |        | 12q           |        | •    | 100                  | Lor    | ngitudinal | chimeri  | sm resu   | lt of Lu  | •        | DNA S04, PreTx D       |          |
| ate of Transplant                                                                                                                                       | 31/12/2020                                                                                              |        | 12q           |        | •    |                      | Lor    | ngitudinal | chimeri  | sm resu   | lt of Lu  | •        | DNA S04, PreTx D       |          |
| ate of Transplant<br>ender<br>omment                                                                                                                    | 31/12/2020                                                                                              |        | 12q           |        | •    | 100                  | Lor    | ngitudinal | chimeri  | sm resu   | lt of Lu  | •        | DNA S04, PreTx D       |          |
| ute of Transplant<br>iender<br>omment<br>koease Type                                                                                                    | 31/12/2020                                                                                              |        | 124           |        | 0    |                      | Lor    | ngitudinal | chimeri  | sm resu   | lt of Lu  | •        | DNA S04, PreTx D       |          |
| late of Transplant<br>lender<br>lomment<br>ksease Type                                                                                                  | 31/12/2020 55<br>O Male O Female                                                                        |        | 124           |        | •    |                      | Loi    | ngitudinal | chimeri  | sm resu   | lt of Lu  | •        | DNA S04, PreTx D       |          |
| lomment<br>Xoease Type<br>Ionor First Name                                                                                                              | 31/12/2020 (1)<br>O Male O Female<br>Donor (1)                                                          |        | 129           |        | •    | 10 -                 | Loi    | ngitudinal | chimeri  | sm resu   | lt of Lu  | •        | DNA S04, PreTx D       |          |
| aate of Transplant<br>lender<br>lomment<br>ksease Type<br>lonor First Name<br>lonor Last Name                                                           | S1/12/2020 5<br>Male O Female<br>Donor 5<br>Darth                                                       |        | 124           |        | •    | ndelma<br>2          | Loi    | ngitudinal | chimeri  | sm resu   | It of Lu  | •        | DNA S04, PreTx D       |          |
| ute of Transplant<br>ionment<br>ionment<br>issase Type<br>ionor First Name<br>ionor Last Name<br>ionor ID                                               | St/12/2020 5<br>Male O Female<br>Donor Darth<br>Vader                                                   |        | 124           |        | •    | 10 administration    | Lor    | ngitudinal | chimeri  | sm resu   | It of Lu  | •        | DNA S04, PreTx D       |          |
| iender<br>comment<br>tonore First Name<br>honor First Name<br>honor ID<br>ample ID                                                                      | 31/12/2020 (1)<br>O Made O Female<br>Donior C<br>Darth<br>Vader<br>DV123<br>DV Sample ID                |        | 124           |        | •    | 10 administration    | Lor    | ngitudinal | chimeri  | sm resu   | It of Lu  | •        | DNA S04, PreTx D       |          |
| iender<br>iender<br>iomment<br>isease Type<br>bonor First Name<br>ionor Last Name<br>ionor ID<br>ample ID<br>ioncentration ng/ul                        | Stri2/22/2 (1)<br>O Male O Female<br>Donor D<br>Darth<br>Vader<br>DV123<br>DV123<br>DV Sample ID<br>100 |        | 124           |        | •    | 10 sefuencial yright | Lor    | ngitudinal | chimeri  | sm resu   | It of Lu  | •        | DNA S04, PreTx D       |          |
| Inte of Transplant<br>Ionment<br>Ionment<br>Ionor First Name<br>Ionor First Name<br>Ionor Lost Name<br>Ionor ID<br>Ioncentration ng/ul<br>Iute of Birth | Stri2/2020 (1)<br>O Male O Female<br>Darth<br>Vader<br>DV123<br>DV Sample ID<br>100<br>Stri2/2020 (1)   |        | 124           |        | •    | 10 sefuencial yright | Lor    | ngitudinal | chimeri  | sm resu   | It of Lu  | •        | DNA S04, PreTx D       |          |
| Inte of Transplant<br>Ionment<br>Ionment<br>Ionor First Name<br>Ionor First Name<br>Ionor Lost Name<br>Ionor ID<br>Ioncentration ng/ul<br>Iute of Birth | Stri2/22/2 (1)<br>O Male O Female<br>Donor D<br>Darth<br>Vader<br>DV123<br>DV123<br>DV Sample ID<br>100 |        | 124           |        | •    | 10 sefuencial yright | Lou    | ngitudinal | chimeri  | sm resu   | It of Lu  | •        | DNA S04, PreTx D       |          |

## The DigitalTRACE<sup>™</sup> Analysis System


TRACE Analysis<sup>™</sup> Software uses a light green/dark green/red color coding for well highlighting.

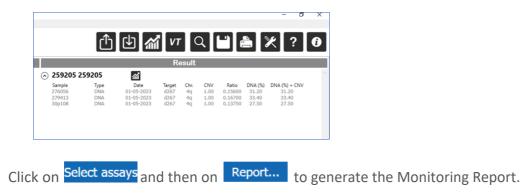


Light green wells represent post sample wells. Dark green wells represent the positive control DNA, Red wells are data which has been rejected.

Light blue wells represent non-template control (NTC).

The user can then Accept/Reject individual wells in an attempt to conform to the acceptable variance allowed. Rejected wells turn Red.




When necessary, for example in case that no CNV information is available from the genotyping, TRACE Analysis<sup>™</sup> Software allows the user to change the CNV information for each sample by

selecting 1 or 2 in the indicated area under the Rawdata view Show rawdata in order to obtain an accurate quantification result:

| ED TAGE Analysis"<br>New York: Indo                                         |                                                | - 0 ×            |
|-----------------------------------------------------------------------------|------------------------------------------------|------------------|
| A                                                                           | (中)        | v7 Q 🖬 🏝 🗶 ? O   |
| Ree data                                                                    | Data analysis                                  |                  |
| Mail Ang, Yang E, Mailan Kawan, Sur, 201, 201, 201, 201, 201, 201, 201, 201 |                                                |                  |
|                                                                             | Sample ID                                      | Accest           |
|                                                                             | 276056                                         | 8                |
|                                                                             | 279413                                         | ×                |
|                                                                             | 11 30p108                                      | 2                |
|                                                                             | POS                                            | ×                |
|                                                                             | These locations are subjected on the spectrum. |                  |
|                                                                             | Show results                                   | Reject Calculate |

Once all the data has been inspected, pressing the "Calculate" Calculate button allows TRACE Analysis<sup>™</sup> to perform the calculations necessary to determine the proportion of the mixed sample which contains the sample of interest.

The percentage of the total sample which contains the sample is displayed in the right hand Result window.



As more data is collected for a particular sample over time, TRACE Analysis<sup>™</sup> Software provides a longitudinal view. For more details, see the <u>The QTRACE<sup>®</sup> Analysis System</u> part of this section.

### **Assay Filtering from Monitoring Reports**

Assay Filtering is a feature which allows a user to selectively remove all data from a particular assay in the final report. This may be important, for example, if one pipette tip from a multichannel pipette did not properly dispense the necessary reagents to a set of reactions. While the data may appear to have good precision - all negatives in this example - it may not be accurate. In the following image, there is a failure of Assay 721 for all samples:

| CTRACE*                                                                |                           | - 🗆 X            |
|------------------------------------------------------------------------|---------------------------|------------------|
| Ä                                                                      | New Screen Quant 🕕 🕁 📶 V1 | 7 Q 💾 🚔 C 🗶 ? 🖸  |
| Raw data                                                               | Data                      | a analysis       |
| Weil Assay Sample ID Cq SD CV Status                                   | 1 2 3 4 5                 | 6 7 8 9 10 11 12 |
| NegGroup                                                               |                           |                  |
| Assay Filtering R                                                      |                           |                  |
| A1 434 R Control 29.32 0.01 0.03                                       |                           |                  |
| A2 434 R Control 29.33 0.01 0.03                                       |                           |                  |
| B1 721 R Control 40.00 0.00 0.00                                       |                           |                  |
| 82 721 R Control 40.00 0.00 0.00                                       |                           |                  |
| C1 824 R Control 27.97 0.02 0.07                                       | F 0 0 0 0 0               |                  |
| C2 824 R Control 27.94 0.02 0.07                                       | E000000                   |                  |
| D1 REF R Control 27.26 0.03 0.10                                       |                           |                  |
| D2 REF R Control 27.30 0.03 0.10                                       |                           |                  |
| A3 434 R Sample 1 28.87 0.07 0.25                                      | ©00000                    |                  |
| A4 434 R Sample 1 28.97 0.07 0.25                                      | +00000                    |                  |
| B3 721 R Sample 1 40.00 0.00 0.00                                      |                           |                  |
| B4 721 R Sample 1 40.00 0.00 0.00<br>C3 824 R Sample 1 27,60 0.03 0.11 |                           |                  |
| C3 824 R Sample 1 27.60 0.03 0.11                                      |                           |                  |
| D3 REF R Sample 1 25,20 0.01 0.04                                      | Sample ID                 | Accept           |
| D4 REF R Sample 1 25.20 0.01 0.04                                      | Track R Control           | ×                |
| A5 434 R Sample 2 37.90 0.55 1.47                                      |                           |                  |
| A6 434 R Sample 2 37.12 0.55 1.47                                      | Track R Sample 1          | 8                |
| 85 721 R Sample 2 40.00 0.00 0.00                                      | D. Committee C.           | 3                |
| 86 721 R Sample 2 40.00 0.00 0.00                                      | Track R Sample 2          |                  |
| C5 824 R Sample 2 35.15 0.28 0.80                                      | Track R Sample 3          | ×.               |
| C6 824 R Sample 2 35.55 0.28 0.80                                      |                           |                  |
| D5 REF R Sample 2 24.79 0.04 0.17                                      | Track R Sample 4          | ×                |
| D6 REF R Sample 2 24.85 0.04 0.17                                      |                           | 2                |
| A7 434 R Sample 3 34.21 0.00 0.00                                      | Track R Sample 5          | 20               |
| A8 434 R Sample 3 34.21 0.00 0.00                                      |                           |                  |
| 87 721 R Sample 3 40.00 0.00 0.00                                      |                           |                  |
| 88 721 R Sample 3 40.00 0.00 0.00                                      |                           |                  |
| C7 824 R Sample 3 32.80 0.02 0.05                                      |                           |                  |
| C8 824 R Sample 3 32.78 0.02 0.05                                      | Show results              | Reject Approve   |
| D7 REF R Sample 3 24.75 0.03 0.13                                      | SHOW RESULTS              | Reject Approve   |

If the plate is approved, under the Results pane, there is 0% reported for Assay 721, while the other assays detec chimerism levels well above zero.

|      |                    |               | Res        | ult          |                  |                        |
|------|--------------------|---------------|------------|--------------|------------------|------------------------|
| ng R | สมั                |               |            |              |                  |                        |
|      | Date<br>17-08-2018 | Target<br>434 | Chr.<br>3q | ddCq<br>1.67 | DNA (%)<br>31.32 | Reference<br>R Control |
|      | 17-08-2018         | 721           | Xq         | 0.00         | 0.00             | R Control              |
|      | 17-08-2018         | 824           | 22q        | 1.70         | 30.76            | R Control              |
|      | 17-08-2018         | 434           | 3q         | 10.65        | 0.06             | R Control              |
|      | 17-08-2018         | 721           | Xq         | 0.00         | 0.00             | R Control              |
|      | 17-08-2018         | 824           | 22q        | 9.85         | 0.11             | R Control              |
|      | 17-08-2018         | 434           | 3q         | 7.39         | 0.60             | R Control              |
|      | 17-08-2018         | 721           | Xq         | 0.00         | 0.00             | R Control              |
|      | 17-08-2018         | 824           | 22q        | 7.34         | 0.62             | R Control              |
|      | 17-08-2018         | 434           | 3q         | 3.80         | 7.16             | R Control              |
|      | 17-08-2018         | 721           | Xq         | 0.00         | 0.00             | R Control              |
|      | 17-08-2018         | 824           | 22q        | 3.96         | 6.45             | R Control              |
|      | 17-08-2018         | 434           | 3q         | 8.80         | 0.22             | R Control              |
|      | 17-08-2018         | 721           | Xq         | 0.00         | 0.00             | R Control              |
|      | 17-08-2018         | 824           | 22q        | 9.09         | 0.18             | R Control              |

If a report is made at this point, the data from Assay 721 will be included in the calculations and the result will underestimate the actual level of recipient in the same.

| Sample                   | Туре     | Date                       | Target     | Chr.     | ΔΔCq        | DNA (%)          | Reference | Informative for        |
|--------------------------|----------|----------------------------|------------|----------|-------------|------------------|-----------|------------------------|
| R Sample 1               | BM       | 17-Aug-2018                | 434        | Зq       | 1.67        | 31.32            | R Control | R Control              |
| R Sample 1               | BM       | 17-Aug-2018                | 721        | Xq       | 0           | 0                | R Control | R Control              |
| R Sample 1               | BM       | 17-Aug-2018                | 824        | 22q      | 1.7         | 30.76            | R Control | R Control              |
|                          |          |                            |            |          | Mean:       | 20.69            |           |                        |
|                          |          |                            |            |          |             |                  |           |                        |
| R Sample 2               | BM       | 17-Aug-2018                | 434        | Зq       | 10.65       | 0.06             | R Control | R Control              |
| R Sample 2               | BM       | 17-Aug-2018                | 721        | Xq       | 0           | 0                | R Control | R Control              |
| R Sample 2               | BM       | 17-Aug-2018                | 824        | 22q      | 9.85        | 0.11             | R Control | R Control              |
|                          |          |                            |            |          | Un Transate | 0.00             |           |                        |
|                          |          |                            |            |          | Mean:       | 0.06             |           |                        |
| 2                        |          |                            |            |          | Mean:       | 0.00             |           |                        |
| R Sample 3               | BM       | 17-Aug-2018                | 434        | 3q       | Mean:       | <i><i>b</i>:</i> | R Control | R Control              |
| R Sample 3<br>R Sample 3 | BM<br>BM | 17-Aug-2018<br>17-Aug-2018 | 434<br>721 | 3q<br>Xq |             | 0.6              | 20        | R Control<br>R Control |
| 2X.08                    |          |                            | -          | 1        |             | 0.6<br>0         | R Control |                        |

In order to remove the data for Assay 721 from the Report, after approving the data, press the 'Select Assays' Select assays button.

The 'FilterAssaysWindow' will appear. In this window, users can choose to exclude the data from an entire assay from reporting.

| FilterAssaysWindo  |                |      |  |
|--------------------|----------------|------|--|
| Select assays used |                |      |  |
|                    | for the report |      |  |
| Unselect All       |                |      |  |
| 434                |                |      |  |
| 721                |                |      |  |
| ✓ 824              |                |      |  |
|                    |                |      |  |
|                    |                |      |  |
|                    |                |      |  |
|                    |                |      |  |
|                    |                |      |  |
|                    |                |      |  |
|                    |                |      |  |
|                    |                |      |  |
|                    |                |      |  |
|                    |                |      |  |
|                    |                |      |  |
|                    |                |      |  |
|                    |                |      |  |
| Save changes       | Cancel         |      |  |
| oure changes       | Cancer         | <br> |  |

In this example, once Assay 721 is de-selected and the changes saved, once the 'Report' button is pressed, the data is no longer present in the report and the average chimerism levels reflect only the included data.

Cell fractions

| Sample     | Туре | Date        | Target | Chr. | ΔΔCq  | DNA (%)Reference | Informative for |
|------------|------|-------------|--------|------|-------|------------------|-----------------|
| R Sample 1 | BM   | 17-Aug-2018 | 434    | 3q   | 1.67  | 31.32R Control   | R Control       |
| R Sample 1 | BM   | 17-Aug-2018 | 824    | 22q  | 1.7   | 30.76R Control   | R Control       |
|            |      |             |        |      | Mean: | 31.04            |                 |
| R Sample 2 | BM   | 17-Aug-2018 | 434    | 3q   | 10.65 | 0.06R Control    | R Control       |
| R Sample 2 | BM   | 17-Aug-2018 | 824    | 22q  | 9.85  | 0.11 R Control   | R Control       |
|            |      |             |        |      | Mean: | 0.09             |                 |
| R Sample 3 | BM   | 17-Aug-2018 | 434    | 3q   | 7.39  | 0.6 R Control    | R Control       |
| R Sample 3 | BM   | 17-Aug-2018 | 824    | 22q  | 7.34  | 0.62R Control    | R Control       |
|            |      |             |        |      | Mean: | 0.61             |                 |

### **External Reference Functions**

The External Reference sample within TRACE Analysis<sup>™</sup> Software has been enhanced in version 2.0. In addition to being able to specifty and use an external reference sample in a qPCR experiment, now the sample may be an impure sample (e.g., an earlier timepoint from the recipient) or a Universal Positive Control (Ref. number 711295).

Typically, the reference sample in qPCR is pure donor or pre-transplant, recipient DNA. In both cases, the reference sample is considered 100% and the calculation of % DNA, based on ddCq, assumes this.

A sample which is less than 100% recipient may be used as a reference, but the software needs to correct the % DNA calculation, based on the starting % of the sample.

TRACE Analysis<sup>™</sup> Software now provides this flexibility and automatic correction in monitoring data.

| Refere        | ence Sampl          | es             |  |
|---------------|---------------------|----------------|--|
| Sample ID     | Concentration ng/ul | %<br>reference |  |
|               | 100                 | 100            |  |
|               | 100                 | 100            |  |
| 10% Recipient | 10                  | 10             |  |

Here is an example of processing the same data wherein the reference sample is either a mixture or a pure sample.

Cell fractions

| Sample                                                                                                          | Туре                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date                       | Target     | Chr.      | ΔΔCq  | DNA (%)       |
|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------|-----------|-------|---------------|
| 15                                                                                                              | DNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 21-Jan-2020                | 548        | Xq        | 2.88  | 1.36          |
| 15                                                                                                              | DNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 21-Jan-2020                | 361        | 12q       | 2.72  | 1.52          |
| 15                                                                                                              | DNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 21-Jan-2020                | 916        | 10q       | 2.73  | 1.5           |
|                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |            |           | Mean: | 1.46          |
| 15                                                                                                              | DNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 21-Jan-2020                | 916        | 10q       | 2.73  | 15.04         |
| in the second | and the second se | CONTRACTOR CONTRACTOR      |            |           | 0.70  |               |
| 15                                                                                                              | DNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 21-Jan-2020                | 361        | 12q       | 2.72  | 15.16         |
| 15<br>15                                                                                                        | DNA<br>DNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 21-Jan-2020<br>21-Jan-2020 | 361<br>548 | 12q<br>Xq | 2.72  | 15.16<br>13.6 |

10% Reference Sample

Pure Reference Sample

## **Simultaneous Genotyping and Monitoring**

With the use of Custom Genotyping Panels, TRACE Analysis<sup>™</sup> Software has the potential to allow concurrent genotyping and monitoring experiments on a single 96-well plate.

This example shows the use of a genotyping panel of 10 assays for a new recipient and also monitoring a different recipient on the same plate.

After setting up a custom panel based on one Row in the Plate editor, choose the name of the custom panel in the 'Plate configuration' drop down menu (Plate setup tab of Preferences).

| late setup | Custom types  | Concentrations | Data and Reports | Data locations | Material tracking | Users   | Language |  |
|------------|---------------|----------------|------------------|----------------|-------------------|---------|----------|--|
| Machine    | for genotypi  | ABI 7500       | v2.0.6           | v              |                   |         |          |  |
| Machine    | for monitorir | ABI 7500       | v2.0.6           | v              |                   |         |          |  |
| Layout ty  | уре           |                |                  | v              |                   |         |          |  |
| Replicate  | 25            | qPCR Dup       | olicates ~       |                |                   |         |          |  |
| Color mo   | ode           | Pastel         | v Pl;            | ate for genoty | ping 1 Row        |         | ¥        |  |
|            |               |                | Pla              | ate for monito | 96-low of         | density | ~        |  |
|            |               |                |                  |                |                   |         |          |  |
|            |               |                |                  |                |                   |         |          |  |

Set up a genotyping test, followed by a monitoring test. When the 'Export' button is pressed, a unique, combined protocol is generated by TRACE Analysis<sup>™</sup> Software. The combined protocol is consistent with the normal workflow for a monitoring experiment. That is, all reagent additions are performed manually, with master mix, assays and DNA dilutions being added to the plate.

|                          |                                                                                                       | Technical Support                                                                                               |                                                                                      |                                                    |                                               |                                               |                                |  |  |  |  |  |  |
|--------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------|-----------------------------------------------|--------------------------------|--|--|--|--|--|--|
|                          | JETA Molecular                                                                                        |                                                                                                                 |                                                                                      |                                                    |                                               |                                               |                                |  |  |  |  |  |  |
|                          | Krommewetering 101C                                                                                   |                                                                                                                 |                                                                                      |                                                    |                                               |                                               |                                |  |  |  |  |  |  |
|                          |                                                                                                       |                                                                                                                 |                                                                                      | 3                                                  | 543AN, Utrec                                  | ht                                            |                                |  |  |  |  |  |  |
|                          |                                                                                                       |                                                                                                                 |                                                                                      | +                                                  | 31.654.136.6                                  | 97                                            |                                |  |  |  |  |  |  |
|                          | GENOTYPING P                                                                                          | ROTOCOL FOR                                                                                                     | NEW TYPING R                                                                         |                                                    |                                               |                                               |                                |  |  |  |  |  |  |
|                          | QUANTIFICATI                                                                                          | ON PROTOCOL F                                                                                                   | OR RETURNING                                                                         | PATIENT                                            |                                               |                                               |                                |  |  |  |  |  |  |
|                          |                                                                                                       |                                                                                                                 |                                                                                      |                                                    |                                               |                                               |                                |  |  |  |  |  |  |
| 1.                       | Set up all reaction                                                                                   | s in a pre-PCR lab, u                                                                                           | nder ambient condi                                                                   | tions withou                                       | t ice.                                        |                                               |                                |  |  |  |  |  |  |
|                          | Briefly vortex and centrifuge all tubes before opening.                                               |                                                                                                                 |                                                                                      |                                                    |                                               |                                               |                                |  |  |  |  |  |  |
| 2.                       | Briefly vortex and                                                                                    | centrifuge all tubes b                                                                                          | before opening.                                                                      |                                                    |                                               |                                               |                                |  |  |  |  |  |  |
| 2.                       |                                                                                                       | centrifuge all tubes to<br>ons as specified in Ta                                                               | 1 0                                                                                  |                                                    |                                               |                                               |                                |  |  |  |  |  |  |
| -                        | Prepare DNA diluti                                                                                    | 0                                                                                                               | able 1:                                                                              |                                                    |                                               |                                               |                                |  |  |  |  |  |  |
| -                        | Prepare DNA diluti                                                                                    | ons as specified in T                                                                                           | able 1:                                                                              |                                                    |                                               |                                               |                                |  |  |  |  |  |  |
| -                        | Prepare DNA diluti                                                                                    | ons as specified in T                                                                                           | able 1:                                                                              | itions                                             |                                               |                                               |                                |  |  |  |  |  |  |
| -                        | Prepare DNA diluti                                                                                    | ons as specified in T                                                                                           | able 1:<br>Sample                                                                    | itions<br>Sample                                   | Water                                         | Total                                         | Amount pe                      |  |  |  |  |  |  |
| 3.                       | Prepare DNA diluti<br>* - Make a Ten-Fol                                                              | ons as specified in Ta<br>d Dilution (1:10) of S                                                                | able 1:<br>ample<br>Table 1. DNA dilu                                                |                                                    | Water<br>Volume                               | Total<br>Volume                               | Amount pe<br>Reaction          |  |  |  |  |  |  |
| 3.<br>No.                | Prepare DNA diluti<br>* - Make a Ten-Fol                                                              | ons as specified in Ta<br>d Dilution (1:10) of S                                                                | able 1:<br>ample<br>Table 1. DNA dilu                                                | Sample                                             |                                               |                                               |                                |  |  |  |  |  |  |
| 3.<br>No.                | Prepare DNA diluti<br>* - Make a Ten-Fol<br>Name                                                      | ons as specified in T<br>d Dilution (1:10) of S<br>Sample ID                                                    | able 1:<br>iample<br>Table 1. DNA dilu<br>Concentration                              | Sample<br>Volume                                   | Volume                                        | Volume                                        | Reaction                       |  |  |  |  |  |  |
| 3.<br>No.<br>1<br>2      | Prepare DNA diluti<br>* - Make a Ten-Fol<br>Name<br>New Typing R                                      | ons as specified in T<br>d Dilution (1:10) of S<br>Sample ID<br>10831 13 Aug                                    | able 1:<br>iample<br>Table 1. DNA dilu<br>Concentration<br>*10 ng/µl                 | Sample<br>Volume<br>6.05 µl                        | Volume<br><mark>175.45</mark> μl              | Volume<br>181.50 µl                           | Reaction<br>5 n<br>5 n         |  |  |  |  |  |  |
| 3.                       | Prepare DNA diluti<br>* - Make a Ten-Fol<br>Name<br>New Typing R<br>New Typing D                      | ons as specified in T.<br>d Dilution (1:10) of S<br>Sample ID<br>10831 13 Aug<br>12560 13 Aug                   | able 1:<br>Table 1. DNA dilu<br>Concentration<br>*10 ng/µl<br>*10 ng/µl              | Sample<br>Volume<br>6.05 µl<br>6.05 µl             | Volume<br>175.45 μl<br>175.45 μl              | Volume<br>181.50 μl<br>181.50 μl              | Reaction<br>5 n                |  |  |  |  |  |  |
| 3.<br>No.<br>1<br>2<br>3 | Prepare DNA diluti<br>* - Make a Ten-Fol<br>Name<br>New Typing R<br>New Typing D<br>Returning Patient | ons as specified in T.<br>d Dilution (1:10) of S<br>Sample ID<br>10831 13 Aug<br>12560 13 Aug<br>DNA 103 13 Aug | able 1:<br>Table 1. DNA dilu<br>Concentration<br>*10 ng/µl<br>*10 ng/µl<br>*10 ng/µl | Sample<br>Volume<br>6.05 µl<br>6.05 µl<br>13.20 µl | Volume<br>175.45 μl<br>175.45 μl<br>184.80 μl | Volume<br>181.50 μl<br>181.50 μl<br>198.00 μl | Reaction<br>5 m<br>5 m<br>10 m |  |  |  |  |  |  |

After the results from the qPCR machine are imported into TRACE Analysis<sup>™</sup> Software, the analysis algorithms appropriate for the samples are applied and the results displayed in the Result pane of the software.

| TRACE Analysis <sup>™</sup><br>e View Help |                  |            |           |                                       |               |        |        |            | -          |            | ×        |
|--------------------------------------------|------------------|------------|-----------|---------------------------------------|---------------|--------|--------|------------|------------|------------|----------|
| ñ                                          | New Screen Quar  | e.         | Ċ U       | <u>۱</u>                              | πQ            |        | à      | ×          | ?          | 1          | Ð        |
|                                            | Data analysis    |            |           |                                       |               | Res    | ılt    |            |            |            |          |
| [                                          | 1 2 3 4 5 6 7 8  | 9 10 11 12 |           | New Ty                                | ping R        | 14     | 1      |            |            |            |          |
|                                            | AOOOOOOOO        |            |           | Marker                                | Chr. location | InfoCq | ΔCq    | Informatik | ive for    | New Ty     | rpin     |
|                                            | • <b>0000000</b> |            |           | 137                                   | 1.0           | 31.56  | 2,2758 | New Typi   | ing D      | Nega       | χtγ      |
|                                            | 00000000(        | ) 000C     |           | 209                                   | 54            | 31.72  | 2,388  | New Typi   | ing R      | Posit      | tive     |
|                                            | · <b>0000000</b> |            |           | 305                                   | 20q           | 30.13  | 0,8462 | New Typi   | ing D      | Nega       | <i>a</i> |
|                                            | 00000000         |            |           | 520                                   | 200           |        |        | New Typi   |            | Posit      |          |
|                                            | 00000000         |            |           | 710                                   | 54            |        |        | New Typi   |            | Nega       |          |
|                                            |                  |            |           | 907                                   | 11q<br>10q    |        |        | New Typi   |            | Posit      |          |
|                                            | +00000000        | 0000       |           |                                       |               |        |        | New 1994   | ang D      | reega      | 124      |
| l                                          |                  |            |           | <ul> <li>unname<br/>Sample</li> </ul> | ed transplan  | tation |        | Terpet     | Dr.        | ddCq       |          |
| Sample ID                                  |                  | Accept     |           | Post 2 13 Aug<br>Post 1 13 Aug        | EM<br>EM      |        | -      | 148        | 170<br>170 | 7.22       |          |
| 10831 13 Aug                               | 1                | ×.         |           | Post 3 13 Aug<br>Post 1 13 Aug        | EM            |        |        | 148        | 170        | 10.71 4.13 |          |
| ype 12560 13 Aug                           | 1                | 1          |           | Post 3 13 Aug<br>Post 2 13 Aug        | EM<br>EM      |        |        | 386        | 50         | 10.23      |          |
| rack DNA 103 13 A                          | lug              | V          |           | Post 3 13 Aug<br>Post 2 13 Aug        | EM            |        |        | 748        | 220        | 11.73      |          |
| rack Post 1 13 Aug                         | 1                | ×.         |           | Post 1 13 Aug                         | EM            |        |        | 748        | 220        | 3.98       |          |
| rack Post 2 13 Aug                         | 1                | 1          |           |                                       |               |        |        |            |            |            |          |
| rock Post 3 13 Aug                         | 1                | ×          |           |                                       |               |        |        |            |            |            |          |
|                                            |                  |            |           |                                       |               |        |        |            |            |            |          |
|                                            |                  |            |           | C                                     |               |        |        |            | _          |            | 3        |
|                                            |                  |            |           |                                       |               |        |        |            | Selec      | t assa     | γS       |
| Show rawdata                               |                  | Reject     | Calculate |                                       |               |        |        |            |            |            |          |

TRACE Analysis<sup>™</sup> Software also generates a report for both recipients being tested on the single plate.

## **Software Overview**

Use of TRACE Analysis<sup>™</sup> Software facilitates setting up qPCR and dPCR based tests for multiple platforms, analyzes data, calculates and displays analyzed data and stores sample-specific information for easy retrieval or exporting to a laboratory information management system. All data files generated by the software are stored in .xml format, for ease of data transfer.



### Preferences

The Preferences Menu of TRACE Analysis<sup>™</sup> Software allows for customization of many experimental parameters.

Through the Preferences window, you can choose default settings for common variables, as well as enter information which may be unique to their testing regime or laboratory.

There are four main tabs within the window which enable changes to the experimental plate setup, manual entry of sample types, disease states and reference samples, experimental protocol variables and data storage customization. These customized parameters are found on the Plate Setup, Custom Types, Concentrations and Data Locations tabs.

### **Plate Setup Preferences**

Tab 1: Plate Setup Preferences

| late setup | Custom types  | Concentrations | Data and Reports | Data locations | Material tracking | Users     | Language |  |
|------------|---------------|----------------|------------------|----------------|-------------------|-----------|----------|--|
| Machine    | for genotypir | QIAcuity       |                  | v              |                   |           |          |  |
| Machine    | for monitorin | QIAcuity       |                  | v              |                   |           |          |  |
| Layout ty  | уре           |                |                  | v              |                   |           |          |  |
| Replicate  | 25            | dPCR Sing      | gletons ~        |                |                   |           |          |  |
| Color mo   | de            | Pastel         | v Pla            | ate for genoty | QIAcuity          | /, v1, 96 | ۷        |  |
|            |               |                | Pla              | ate for monito | ring 96-low o     | density   | ×        |  |
|            |               |                |                  |                |                   |           |          |  |
|            |               |                |                  |                |                   |           |          |  |

"Machine for genotyping":

Define the default genotyping analysis platform by clicking the radio button appropriate for the machine in use. TRACE Analysis<sup>™</sup> Software will generate the appropriate sample setup file for the machine, as well as be able to analyze the results exported from that machine.

### "Machine for monitoring":

Define the default monitoring analysis platform by clicking the radio button appropriate for the machine in use. TRACE Analysis<sup>™</sup> Software will generate the appropriate sample setup file for the machine, as well as be able to analyze the results exported from that machine.

### "Layout type":

Define whether the samples are placed onto the plate in groups or in rows. We strongly recommend organizing samples by groups, as this makes the pipetting scheme very easy to follow.

### "Replicates":

Define whether to perform quantitative analysis using singletons, duplicates or triplicates. For a qPCR monitoring, JETA Molecular recommends the use of triplicates, as low concentration DNA samples may exhibit stochastic variance in Cq.

#### "<u>Color mode</u>":

The color highlights which appear on the software interface and the protocols can be modified to use a scheme which is preferred by the user.

### "<u>Plate for genotyping</u>":

This preference selects the plate chemistry version in use for genotyping. Different plate versions have slightly different assay panel members. If you have created Custom Genotyping Panels, they will appear here.

### "<u>Plate for monitoring</u>":

This preference selects the plate version in use for monitoring. This allows you to select among different plate types used in quantitative analysis by digital PCR.

### **Custom Types Preferences**

In the Custom types tab of the Preferences Menu, users may define the cell types being used, the diseases associated with the samples as well as any external reference materials which may be used.

Tab 2: Custom Types Preferences

| late setup | Custom typ | pes  | Concentrations   | Data and Reports     | Data locations | Material tracking | Users | Language |  |
|------------|------------|------|------------------|----------------------|----------------|-------------------|-------|----------|--|
| Cell Types | Diseases   | Ext  | ernal references |                      |                |                   |       |          |  |
| Custom s   | ample type | s ma | ay be added or d | leleted using this n | nenu           |                   |       |          |  |
| DNA        |            |      | ×                | Ad                   | bi             |                   |       |          |  |
| B cells    |            |      | ×                |                      |                |                   |       |          |  |
| T cells    |            |      | ×                |                      |                |                   |       |          |  |
| Blood      |            |      | ×                |                      |                |                   |       |          |  |
| BM         |            |      | ×                | Re                   | set            |                   |       |          |  |
|            |            |      |                  |                      |                |                   |       |          |  |
|            |            |      |                  |                      |                |                   |       |          |  |
|            |            |      |                  |                      |                |                   |       |          |  |

Cell Types tab of the Custom types tab of the Preferences Menu:

Define the origin of the materials being tested. You can type a sample material in the empty box near the Add button, then press Add, and the sample type will now appear as an option in TRACE Analysis<sup>™</sup>. The small "x" on the same line as the sample type is used to remove that type from the software. It is best to add all known types from the earliest use of TRACE Analysis<sup>™</sup>.

| Cell Types Diseases External references Custom disease types may be added or deleted using this menu AML * Add Reset | late setup | Custom typ  | Concentra       | tions  | Data and Reports    | Data locations | Material tracking | Users | Language |  |
|----------------------------------------------------------------------------------------------------------------------|------------|-------------|-----------------|--------|---------------------|----------------|-------------------|-------|----------|--|
| AML 🗶 Add                                                                                                            | Cell Types | Diseases    | External refere | nces   |                     |                |                   |       |          |  |
|                                                                                                                      | Custom d   | isease type | s may be adde   | d or d | eleted using this n | nenu           |                   |       |          |  |
| Reset                                                                                                                | AML        |             | ×               |        | Ad                  | bb             |                   |       |          |  |
| Ne Jek                                                                                                               |            |             |                 |        | Re                  | cot            |                   |       |          |  |
|                                                                                                                      |            |             |                 |        | - No.               |                |                   |       |          |  |
|                                                                                                                      |            |             |                 |        |                     |                |                   |       |          |  |
|                                                                                                                      |            |             |                 |        |                     |                |                   |       |          |  |
|                                                                                                                      |            |             |                 |        |                     |                |                   |       |          |  |
|                                                                                                                      |            |             |                 |        |                     |                |                   |       |          |  |
|                                                                                                                      |            |             |                 |        |                     |                |                   |       |          |  |

Diseases tab of the Custom types tab of the Preferences Menu:

Define diseases associated with the samples to be tested.

Type the disease name in the empty box near the Add button, then press Add, and the disease will now appear as an option in TRACE Analysis<sup>™</sup> Software. The small "x" on the same line as the disease name can be used to remove that disease from the software.

It is best to add all known diseases from the earliest use of TRACE Analysis<sup>™</sup> Software.

| late setup | Custom typ   | Concentrations      | Data and Reports     | Data locations | Material tracking | Users | Language |  |
|------------|--------------|---------------------|----------------------|----------------|-------------------|-------|----------|--|
| Cell Types | Diseases     | External references |                      |                |                   |       |          |  |
| Custom r   | eference sa  | mples may be adde   | d or deleted using t | this menu      |                   |       |          |  |
| Cell lin   | e 101        |                     | ×                    | Add            |                   |       |          |  |
| Univers    | sal Positive | Control             | ×                    | Reset          |                   |       |          |  |
|            |              |                     | ]                    |                |                   |       |          |  |
|            |              |                     |                      |                |                   |       |          |  |
|            |              |                     |                      |                |                   |       |          |  |
|            |              |                     |                      |                |                   |       |          |  |
|            |              |                     |                      |                |                   |       |          |  |
|            |              |                     |                      |                |                   |       |          |  |
|            |              |                     |                      |                |                   |       |          |  |

External references tab of the Custom types tab of the Preferences Menu:

Define external reference DNAs to be used in the monitoring using qPCR.

Type the reference name in the empty box near the Add button, then press Add, and the reference will now appear as an option in TRACE Analysis™ Software. The small "x" on the same

line as the reference name can be used to remove that reference from the software. It is best to add all known references from the earliest use of TRACE Analysis<sup>™</sup> Software.

## **Concentrations Preferences**

Tab 3: Concentration Preferences

| late setup | Custom types  | Concentrations | Data and Reports | Data loca | ations | Material tracking | Users | Language |  |
|------------|---------------|----------------|------------------|-----------|--------|-------------------|-------|----------|--|
| Correctio  | on for excess | master mix     |                  | 15        | %      |                   |       |          |  |
| Correctio  | on for excess | DNA dilution   |                  | 15        | %      |                   |       |          |  |
| Sample 1   | Input for Gen | otyping        |                  | 10        | ng     |                   |       |          |  |
| Reference  | ce Sample Inp | out for Monito | ring (qPCR)      | 10        | ng     |                   |       |          |  |
| PostTx S   | Sample Input  | for Monitoring | J                | 150       | ng     |                   |       |          |  |
| Default    | concentration | of samples     |                  | 50        | ng/    | μL                |       |          |  |
|            |               |                |                  |           |        | Reset             |       |          |  |

Concentrations tab of the Preferences Menu:

Define the variables used in protocol generation and experimental execution.

Define how much excess master mix and how much excess DNA dilution to use in the experimental protocol.

TRACE Analysis<sup>™</sup> calculates the volumes needed, based on the experimental setup and then adds these additional factors to provide more than enough of each solution to execution the experiment.

Define the sample input for genotyping using different amplification methods.Based on the data from verification studies, JETA Molecular recommends the use of 5ng DNA input per well for genotyping using qPCR and 10ng for genotyping using dPCR.

Define the amount of reference sample used for monitoring using qPCR

Define the sensitivity to achieve in the experiment by entering the target DNA input per well for the monitoring samples.

While sensitivity may be thought of in terms of cell numbers or percentages or grams of DNA, the software uses nanograms of input to generate an appropriate protocol.

Define the default concentrations of samples.

This number will appear for all samples and can be altered if necessary.

#### **Data and Reports Preferences**

Tab 4: Data and Report Preferences

#### <u>qPCR tab:</u>

| late setup | Custom types    | Concentrations | Data an | d Reports | Data locations | Material tracking  | Users   | Language |
|------------|-----------------|----------------|---------|-----------|----------------|--------------------|---------|----------|
| qPCR dP    | PCR             |                |         |           | Laboratory     | Information        |         |          |
| Replicat   | e Highlightin   | g Method       |         |           | Department     | Technical Supp     | ort     |          |
| Method     | Value           |                |         |           | Institution    | JETA Molecula      | r       |          |
| ○ % CV     | 2               |                |         |           | Address        | Krommeweter        | ing 101 | c        |
| SD         | 1               |                |         |           | Postal code, 0 | City 3543 AN, Utre | cht     |          |
| Cq Ran     | ge 0.5          |                |         |           | Telephone      | +316 5413 669      | 97      |          |
| Report I   | Highlighting    |                |         |           | Comment        |                    |         |          |
| Method     |                 |                | Low     | High      | Anonymous      | Reporting          |         |          |
| Replica    | te Highlighting |                |         |           | - · ·          | nymous Reporting   |         |          |
| Reference  | nce Sample Cq R | ange           | 24      | 28        | HPRIM Rep      |                    |         |          |
| Referen    | nce Sample ∆Cq  | [              | -1.5    | 1.5       | Allow HPRI     | 3                  |         |          |
| Monito     | ring Sample RNa | aseP Cq Range  | 20      | 24        |                |                    |         |          |

In order to achieve more customized data analysis,TRACE Analysis<sup>™</sup> has a tab called Data and Reports in the Preferences section of the software.

There is a Replicate Highlighting Section and a Report Highlighting Section.

In Replicate Highlighting, users can select between three methods to highlight variance in replicate samples. Replicates displaying variance in %CV, SD or Cq range may be user defined, based on the lab's practices. The chosen method is applied to all replicates in monitoring, whether it is the reference sample or the monitoring sample.

In Report Highlighting, users can select to have data highlighted on the experimental reports, if the data falls outside of input ranges. The user defines which ranges are critical and these will be readily apparent when data reports are reviewed

In Report Highlighting, users have the ability to choose to have portions of their report highlighted, if values generated fall outside an expected range. The user can choose up to four different data quality inspections to be performed on monitoring data, with values outside of the input ranges highlighted automatically on the report

Protocols and Reports can be customized by adding institutional information under the Laboratory Information section. Any information entered here will appear at the top of all protocols and reports generated by TRACE Analysis<sup>™</sup> Software.

#### dPCR tab:

| Preferences                                                                                                                                                                                                                                                             | ×                                                                                                                                                                                                                                                                  | (a) Preferences                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ×     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Plate setup Custom types Concentrations Data and Reports                                                                                                                                                                                                                | Data locations Material tracking Users Language                                                                                                                                                                                                                    | Plate setup Custom types Concentrations Data and Reports Data locations Material tracking Users Language                                                                                                                                                                                                                                                                                                                                                               |       |
| GPCR     dPCR       Report Highlighting     Low       Total valid droplets/partitions     6000       Post transplant RNaseP     200       concentration (copies/µl)     200       NTC concentration (copies/µl)     0       UPC concentration     5       Other     UPC | Laboratory Information Department Technical Support Institution JETA Molecular Address Kommexetering 101C Postal code, City 3543 AA, Utrecht Telephone -1316 5413 6697 Comment Anonymous Reporting Allow Anonymous Reporting HPRIM Reporting Allow HPRIM Reporting | Image: Constraint of Constraints     Laboratory Information       Report Highlighting     Department     Technical Support       Total valid droplets/partitions     3000     9000     Address       Post transplant RNaseP     200     5000     Postal code, City       concentration (copies/µI)     0     0.3     Comment       UPC concentration [copies/µI]     5     1000     Anonymous Reporting       Other     HPRIM Reporting     Use UPC     MIRK Reporting |       |
|                                                                                                                                                                                                                                                                         | Ok Cancel Apply                                                                                                                                                                                                                                                    | Ok Cancel /                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Apply |

The number of valid droplets/partitions, post transplant RNase P concentration, UPC and NTC concentration can be defined here. If the actual droplet/partition number or RNaseP, NTC or UPC concentration falls outside of the defined range, data will be highlighted in the report.

In the report highlighting settings, the total valid droplet/partitions values would be different for plate-based digital PCR (example on the right) and for droplet-based digital PCR (example on the left).

The use of a Universal Positive Control in a dPCR monitoring can be enabled or disabled here.

#### **Data Location Preferences**

Tab 5: Data locations Preferences

|           |                | concentrations    | Data and Reports     | Data locations  | Material tracking | Users | Language |         |
|-----------|----------------|-------------------|----------------------|-----------------|-------------------|-------|----------|---------|
| Choose th | e location whe | re the software s | stores your data fil | es              |                   |       |          |         |
| Data stor | re location    |                   | C:\Users\jeroen\D    | ropbox (JETA)\; | ETA Team Folder   | JETA) | 02 📜     | Default |
|           |                |                   |                      |                 |                   |       |          |         |
|           |                |                   |                      |                 |                   |       |          |         |
|           |                |                   |                      |                 |                   |       |          |         |
|           |                |                   |                      |                 |                   |       |          |         |
|           |                |                   |                      |                 |                   |       |          |         |
|           |                |                   |                      |                 |                   |       |          |         |
|           |                |                   |                      |                 |                   |       |          |         |

Data locations tab of the Preferences Menu:

Define where TRACE Analysis<sup>™</sup> Software stores the data it generates.

For labs using multiple copies of TRACE Analysis<sup>™</sup> Software, this location is likely best set as a shared location on a server. When all local copies of TRACE Analysis<sup>™</sup> Software point to the same data storage location, all copies can read and write to the same data files, eliminating the need to transfer files between computers.

## **Reagent Tracking Preferences**

This tab is where reagent lot numbers and expiration dates may be entered into TRACE Analysis<sup>™</sup> Software. This information will populate protocols and reports, eliminating the need for the operator to write the information each time.

#### qPCR Reagent tracking tab

This tab enables to enter reagent lot numbers and expiration dates for qPCR reagents.

| late setup | Custom types  | Concent  | trations  | Data a     | and Reports | Data locatio | ons   | Material tracking | Users | Language |   |
|------------|---------------|----------|-----------|------------|-------------|--------------|-------|-------------------|-------|----------|---|
| qPCR Reag  | gent tracking | dPCR Rea | gent trac | king       | Equipment & | consumable   | es ti | racking           |       |          |   |
| Name       |               |          | Lot N     | umber      | Expiry Date |              |       | Comment           |       |          |   |
| QTRACE     | INDEL Assay 6 | i34      | P10       | 700        | 31/07/202   | 23 15        | 5     |                   |       |          | ^ |
| QTRACE     | INDEL Assay 6 | i50      | NOO       | 580        | 31/03/202   | 2 15         | ,     |                   |       |          |   |
| QTRACE     | INDEL Assay 6 | i63      | Q10       | 490        | 30/09/202   | 24 15        | ,     |                   |       |          |   |
| QTRACE     | INDEL Assay 6 | 570      | P104      | <b>150</b> | 28/02/202   | 23 15        | ,     |                   |       |          |   |
| QTRACE     | INDEL Assay 6 | 78       | R11       | 370        | 31/05/202   | 25 15        | ,     |                   |       |          |   |
| QTRACE     | INDEL Assay 6 | 81       | R11       | 380        | 31/05/202   | 25 15        | ,     |                   |       |          |   |
| QTRACE     | INDEL Assay 6 | i94      | R11       | 390        | 31/05/202   | 25 15        | ,     |                   |       |          |   |
| QTRACE     | INDEL Assay 7 | 06       | NOO       | 060        | 31/12/202   | 21 15        | ,     |                   |       |          |   |
| QTRACE     | INDEL Assay 7 | 10       | N01       | 910        | 31/08/202   | 2 15         | ,     |                   |       |          |   |
| QTRACE     | INDEL Assay 7 | 21       | N01       | 920        | 31/08/202   | 2 15         | a     |                   |       |          | ~ |

## dPCR Reagent tracking tab

This tab enables to enter reagent lot numbers and expiration dates for dPCR reagents.

| late setup | Custom types  | Concentrations    | Data and Reports | Data locations   | Material trac | king Users | Language |   |
|------------|---------------|-------------------|------------------|------------------|---------------|------------|----------|---|
| qPCR Rea   | gent tracking | dPCR Reagent trac | king Equipment   | & consumables tr | acking        |            |          |   |
| Name       |               |                   | Lot Number       | Expiry Date      | Cor           | nment      |          |   |
| d102       |               |                   | T10580           | 31/03/2026       | 15            |            |          | ^ |
| d113       |               |                   | S10670           | 30/06/2026       | 15            |            |          |   |
| d120       |               |                   | T10870           | 31/05/2027       | 15            |            |          |   |
| d137       |               |                   | S10680           | 30/06/2026       | 15            |            |          |   |
| d148       |               |                   | S10230           | 31/03/2026       | 15            |            |          |   |
| d157       |               |                   | T10210           | 31/03/2027       | 15            |            |          |   |
| d176       |               |                   | T10590           | 30/04/2027       | 15            |            |          |   |
| d183       |               |                   | S11300           | 30/11/2026       | 15            |            |          |   |
| d198       |               |                   | S11100           | 31/10/2026       | 15            |            |          |   |
| d209       |               |                   | S10110           | 31/01/2026       | 15            |            |          |   |

## Equipment & consumables tracking tab

This tab enables to enter serial number and location information for equipment and consumables.

| Plate setup | Custom 1   | types  | Conce     | entrations | Data  | and Repo | orts Data locations | Material | tracking | Users | Language |  |
|-------------|------------|--------|-----------|------------|-------|----------|---------------------|----------|----------|-------|----------|--|
| qPCR Reage  | ent tracki | ing dF | PCR R     | eagent tra | cking | Equipme  | nt & consumables tr | acking   |          |       |          |  |
| Name        | Lot N      | umber  |           | Expiry Da  | te    |          | Comment             |          | Prin     | t     |          |  |
| ABI 750     | 0 SN 2     | 7500)  | <b>xx</b> | 21/10/2    | 021   | 15       | Genetic Analysis I  | .ab      | -        |       |          |  |
| P10         | SN Y       | xx     |           | 25/02/2    | 021   | 15       | DNA Lab             |          | ~        |       |          |  |
| P100        | SN X       | xxx    |           | 24/03/2    | 021   | 15       | PCR Setup Lab       |          | -        |       |          |  |
| Ad          | d          |        | De        | lete       | 021   | 15       |                     |          |          |       |          |  |
| Ad          | d          |        | De        |            | 021   | 15       |                     |          |          |       |          |  |

# **Users Preferences**

This tab is where User profiles are managed by an individual with 'Supervisor' rights in TRACE Analysis™ Software.

| ate setup | Custom types | Concentrations | Data and Reports | Data locations | Material tracking | Users | Language |  |
|-----------|--------------|----------------|------------------|----------------|-------------------|-------|----------|--|
| Jser Man  | agement      |                |                  |                |                   |       |          |  |
|           |              | Name           |                  | Role           | ^                 |       |          |  |
| Technici  | an           |                | Anal             | yst            |                   |       |          |  |
| Advance   | ed User      |                | Adva             | ancedUser      |                   |       |          |  |
| Lab Dire  | ector        |                | Supe             | ervisor        |                   |       |          |  |
| Technici  | an 2         |                | Anal             | yst            |                   |       |          |  |
|           |              |                |                  |                | $\sim$            |       |          |  |
| Change    | Password     | Add User       | Delete Use       | er             |                   |       |          |  |
|           |              |                |                  |                |                   |       |          |  |
|           |              |                |                  |                |                   |       |          |  |
|           |              |                |                  |                |                   |       |          |  |
|           |              |                |                  |                |                   |       |          |  |
|           |              |                |                  |                |                   |       |          |  |
|           |              |                |                  |                |                   |       |          |  |
|           |              |                |                  |                |                   |       |          |  |

## Language Preferences

This tab allows the users to select among available language versions.

| late setup | Custom types | Concentrations | Data and Reports | Data locations | Material tracking | Users | Language |  |
|------------|--------------|----------------|------------------|----------------|-------------------|-------|----------|--|
| Language   |              |                |                  | Engli          | sh                |       |          |  |
|            |              |                |                  | Englis         | h                 |       |          |  |
|            |              |                |                  |                |                   |       |          |  |
|            |              |                |                  |                |                   |       |          |  |
|            |              |                |                  |                |                   |       |          |  |
|            |              |                |                  |                |                   |       |          |  |
|            |              |                |                  |                |                   |       |          |  |
|            |              |                |                  |                |                   |       |          |  |
|            |              |                |                  |                |                   |       |          |  |
|            |              |                |                  |                |                   |       |          |  |
|            |              |                |                  |                |                   |       |          |  |
|            |              |                |                  |                |                   |       |          |  |
|            |              |                |                  |                |                   |       |          |  |

## **Software Access And User Profile Management**

TRACE Analysis<sup>™</sup> Software restricts access to the software and well as functions within the software.

When TRACE Analysis<sup>™</sup> launches for the fist time, User Profiles need to be established.

Once logged in with JETA's credentials, a Supervisor account needs to be created.

In the Preferences, under the new User tab, there is an option for creating New Users.

| ate setup | Custom types | Concentrations | Data and Reports | Data locations | Material tracking | Users | Language |  |
|-----------|--------------|----------------|------------------|----------------|-------------------|-------|----------|--|
| User Man  | agement      |                |                  |                |                   |       |          |  |
|           | (j           | Name           |                  | Role           |                   |       |          |  |
|           |              |                |                  |                |                   |       |          |  |
|           |              |                |                  |                |                   |       |          |  |
|           |              |                |                  |                |                   |       |          |  |
| Changes   | Descurred    | Add How        | Delate Use       |                |                   |       |          |  |
| Change    | Password     | Add User       | Delete Use       | er             |                   |       |          |  |
| Change    | Password     | Add User       | Delete Use       | er             |                   |       |          |  |
| Change    | Password     | Add User       | Delete Use       | er             |                   |       |          |  |

By clicking 'Add User' a dialog box opens wherein the details of the new user can be added.

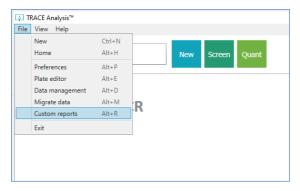
| Add User                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              | 8 <u>-10</u> | Х |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|---|
| Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Lab Director |              |   |
| Password                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •            |              |   |
| And the second sec |              |              |   |
| Confirm password                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |              |   |

After the Supervisor has created an account, multiple additional "Supervisor," "Advanced User," and "Analyst" accounts can be made.

| late setup | Custom types | Concentrations | Data and Reports | Data locations | Reagent tracking | Users | Language |  |
|------------|--------------|----------------|------------------|----------------|------------------|-------|----------|--|
| User Man   | agement      |                |                  |                |                  |       |          |  |
|            | 1            | Name           |                  | Role           | · ^ ·            |       |          |  |
| Technicia  | an           |                | Analy            | /st            |                  |       |          |  |
| Advance    |              |                |                  | ncedUser       |                  |       |          |  |
| Lab Dire   |              |                |                  | rvisor         |                  |       |          |  |
| Technicia  | an 2         |                | Analy            | /st            |                  |       |          |  |
| Change     | Password     | Add User       | Delete Use       | er             | ~                |       |          |  |
|            |              |                |                  |                |                  |       |          |  |
|            |              |                |                  |                |                  |       |          |  |
|            |              |                |                  |                |                  |       |          |  |
|            |              |                |                  |                |                  |       |          |  |
|            |              |                |                  |                |                  |       |          |  |
|            |              |                |                  |                |                  |       |          |  |
|            |              |                |                  |                |                  |       |          |  |

Analysts and Advanced Users are allowed to change their passwords, and to edit the Reagent tracking Preferences information. All other Preferences settings are controlled by the Supervisor. Advanced Users inspect and can validate a result.

|               | Edit all tabs in<br>Preferences | Results<br>Validation | Add or Delete<br>Users/Passwords  | Edit Reagent<br>Tracking Data |
|---------------|---------------------------------|-----------------------|-----------------------------------|-------------------------------|
| Supervisor    | Yes                             | Yes                   | Modify All Users and<br>Passwords | Yes                           |
| Advanced User | No                              | Yes                   | Modify Personal Password          | Yes                           |
| Analyst       | No                              | No                    | Modify Personal Password          | Yes                           |


# **File Management**

There are a few files that TRACE Analysis<sup>™</sup> stores to enable tracking of data, logging of errors and supply a list of assays from JETA Molecular's kits.

Data storage and retrieval in TRACE Analysis<sup>™</sup> Software version 2.0 is enhanced through the introduction of a relational database data storage format. Previous versions of software relied on generation of .xml files which were stored in various folders, making the information captured in the software difficult to access.

Information is now captured and stored in a database, making SQL queries of the data possible. This also facilitates enhanced performance of the software, allowing users more ability to modify or update experiments and sample records, as needed.

In order to query records in the database, under 'File-->Custom reports' leads to a search interface for TRACE Analysis<sup>™</sup> Software.



Search queries can be built, executed and stored. The results of the queries can also be easily exported to .csv and .xls format files. The image below shows the results for the number of times an assay is informative for recipients in the database.

| TRACE Analysis"                                                         |                                                                                                                                                                  |                          |          |                                        |                       | -            |                                       | ×            |
|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------|----------------------------------------|-----------------------|--------------|---------------------------------------|--------------|
| File View Help                                                          |                                                                                                                                                                  |                          |          |                                        |                       |              |                                       |              |
| ñ                                                                       |                                                                                                                                                                  | New Screen Quant         | <u>1</u> | ±] М́ [ ∨т                             | ۹ 💾 🚔                 | ×            | ?                                     | 0            |
| <u>Count</u> of                                                         | UMNS<br>WellPrimers Name None<br>OffsetControl as WellPrimers<br>dd a new column)                                                                                | OffsetControl Count None |          | Columns Sort<br>[Click here to add a n | 5                     |              | Ciea<br>Save Q<br>Load Q<br>Execute ( | uery<br>uery |
| <ul> <li>✓ 1 Sample</li> <li>✓ 2 WellPri</li> <li>✓ 3 Sample</li> </ul> | nditions<br>wds where all of the following<br>as Otraceholode starts with Gr<br>mera InformativeForSample in<br>as SampleType is equal to Br<br>dd a new column] | enotyping<br>a not null  |          |                                        |                       |              |                                       |              |
| Query Re                                                                |                                                                                                                                                                  |                          |          |                                        | [Export to Csv] [Expo | rt to Excel] |                                       |              |
|                                                                         | WellPrimers OffsetControl Count                                                                                                                                  |                          |          |                                        |                       |              |                                       |              |
| 137                                                                     | 375                                                                                                                                                              |                          |          |                                        |                       | ^            |                                       |              |
|                                                                         | 281                                                                                                                                                              |                          |          |                                        |                       | _            |                                       |              |
| 157                                                                     | 47<br>64                                                                                                                                                         |                          |          |                                        |                       | _            |                                       |              |
| 176                                                                     | 64<br>53                                                                                                                                                         |                          |          |                                        |                       | _            |                                       |              |
| 198                                                                     | 60                                                                                                                                                               |                          |          |                                        |                       | _            |                                       |              |
|                                                                         | 329                                                                                                                                                              |                          |          |                                        |                       | _            |                                       |              |
|                                                                         | 50                                                                                                                                                               |                          |          |                                        |                       | ~            |                                       |              |
| 666                                                                     | 30                                                                                                                                                               |                          |          |                                        |                       |              |                                       |              |

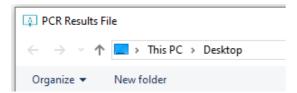
For the logging of errors, files are created in your temporary directory (C:\Users\Your Profile\AppData\Local\Temp), named QTRACE.log(n).

These file store per session in TRACE Analysis<sup>™</sup> Software what actions the user performs. In the case of an error these log files can be send to support to detect the cause and solve the issue.

The list of assays from JETA's kits is stored by default at C:

\ProgramData\QTRACE\QTRACEKit\JETAMarkers.txt. This file is created during installation and must at all times be present and unmodified for TRACE Analysis<sup>™</sup> Software to work.

## Experimental Files Saved in TRACE Analysis<sup>™</sup> Software


TRACE Analysis<sup>™</sup> Software automates the storage of all files associated with a recipient's testing history by automatically creating folders which take the form: recipient Name\_recipient ID

| $\rightarrow$ QTRACE $\rightarrow$ Data Folders $\rightarrow$ | Gregor Mendel_7458 |             |
|---------------------------------------------------------------|--------------------|-------------|
| Name                                                          | Date modified      | Туре        |
| PCR Results Files                                             | 16/01/2025 09:14   | File folder |
| PCR Run Files                                                 | 16/01/2025 09:13   | File folder |
| PCR Setup Files                                               | 11/11/2024 08:35   | File folder |
| Protocols                                                     | 11/11/2024 08:37   | File folder |
| ᡖ Reports                                                     | 16/01/2025 09:14   | File folder |

Within each of these folders are all the files used to track the recipient. When PCR data is imported into TRACE Analysis<sup>™</sup>, the user also has the ability to identify the location of the original PCR machine file.

| _ | 5 |
|---|---|
| k | 6 |

After clicking the "Import PCR Data" button, TRACE Analysis™ first asks the user to identify the location of the exported results file. The imported file is automatically saved to the PCR Results File folder, while the data from the file is extracted and analyzed in TRACE Analysis<sup>™</sup>.



After selecting the results file, TRACE Analysis<sup>™</sup> prompts the user to identify the location of the data collection file from the PCR machine. The imported file is automatically saved to the PCR Runs File folder.

| PCR Machine | File                  |
|-------------|-----------------------|
| ← → • ↑     | 🔜 > This PC > Desktop |
| Organize 🔻  | New folder            |

The selection of the data file is optional, but if it is selected, TRACE Analysis™ will copy this file

and put it into the Run Files folder for each patient in the same experiment. With the reports that are generated from each experiment, they are differentially saved – only the report for the specific patient goes into that patients file, while the other patient sample has a separate report, and it is saved in their separate folder.

TRACE Analysis<sup>™</sup> Software also creates a folder called Exports. The data from every experiment is automatically converted into an xml file which is then easily available to integrate into a LIMS.

| QTRACE          |    |
|-----------------|----|
| Name            |    |
| 🌏 Data Folders  |    |
| 🚽 Experiment    |    |
| Exports         |    |
| on Sample       |    |
| 🛃 Transplantati | on |
|                 |    |

#### **Data Exports - csv and xlsx**

In addition to the previous .xml export files which were automatically created by TRACE Analysis<sup>™</sup> Software, TRACE Analysis<sup>™</sup> Software v1.08 now automatically generates .csv and .xlsx files containing the data from the experimental reports.

| QTRACE > Exports              |                  | ~ Ū                           | Search Exports | 5     |
|-------------------------------|------------------|-------------------------------|----------------|-------|
| Name                          | Date modified    | Туре                          | 1              | Size  |
| 180614 L06300 UCLA801 T0.xlsx | 08/04/18 4:33 PM | Microsoft Excel Worksheet     |                | 6 KB  |
| 180614 L06300 UCLA801 T0.csv  | 08/04/18 4:33 PM | Microsoft Excel Comma Separat | ed Values File | 3 KB  |
| 180614 L06300 UCLA801 T0.xml  | 08/04/18 4:33 PM | XML Document                  |                | 14 KB |

These new automated exports are stored in the Exports folder within the QTRACE folder.

The following is an example of the data found in the xlsx file from a Custom Genotyping experiment.

This file has recipient and donor IDs, informative assays, dCq values, assay status (positive, negative or atypical) and the mean Cq values for assay replicates.

|    | 10831 21 Aug | 2018-08- | 10831 21 Aug |      |          |         |          |         |
|----|--------------|----------|--------------|------|----------|---------|----------|---------|
| 1  | 12560 21 Aug | 12560 21 | Aug          |      |          |         |          |         |
| 1  | 916          | 10q      | 12560 21 Aug | 0.52 | Negative | 40      | Positive | 29.8002 |
| 2  | 305          | 20q      | 12560 21 Aug | 0.85 | Negative | 40      | Positive | 30.1296 |
| 3  | 710          | 5q       | 12560 21 Aug | 1.06 | Negative | 40      | Positive | 30.3468 |
| 4  | 137          | 1p       | 12560 21 Aug | 2.28 | Negative | 40      | Positive | 31.5592 |
| 5  | 907          | 11q      | 10831 21 Aug | 0.45 | Positive | 29.777  | Negative | 40      |
| 6  | 520          | 20q      | 10831 21 Aug | 0.78 | Positive | 30.1095 | Negative | 40      |
| 7  | 209          | 5q       | 10831 21 Aug | 2.39 | Positive | 31.7184 | Negative | 40      |
| 8  | 361          | 12q      | None         | 2    | Negative | 40      | Negative | 40      |
| 9  | 706          | 16p      | None         | -    | Positive | 30.3095 | Positive | 30.2039 |
| 10 | 755          | 11q      | None         | 2    | Negative | 40      | Negative | 40      |
| 11 | NTC          | 14q      | None         | -    | Negative | 40      | Negative | 40      |
| 12 | POS          | 14g      | None         | 14   | Positive | 29.3304 | Positive | 29.2834 |

The following is an example of an xlsx export from a monitoring experiment.

Again, samples are identified, the mean Cq values and the %DNA value for each sample and

assay combination are exported, in addition to the Mean % DNA for all assays tested on a single sample.

| RECIPIENT          | DNA 103 21 Aug | DNA 103 21 Aug  | 2018-08- | DNA 103 21 Aug |
|--------------------|----------------|-----------------|----------|----------------|
| DONOR              | 2              | DNA 103 21 Augr | DNA 103  | 21 Augr        |
| SAMPLE             | 1              | DNA 103 21 Aug  | Referen  | ce             |
| MARKER             | DNA 103 21 Aug | 1               | 148      | 30.03          |
| MARKER             | DNA 103 21 Aug | 2               | 386      | 30.99          |
| MARKER             | DNA 103 21 Aug | 3               | 748      | 29.48          |
| MARKER             | DNA 103 21 Aug | 4               | RNaseP . | 29.85          |
| SAMPLE             | 2              | Post 1 21 Aug   | Sample   |                |
| MARKER             | Post 1 21 Aug  | 1               | 148      | 29.68          |
| MARKER             | Post 1 21 Aug  | 2               | 386      | 30.83          |
| MARKER             | Post 1 21 Aug  | 3               | 748      | 29.17          |
| MARKER             | Post 1 21 Aug  | 4               | RNaseP   | 25.57          |
| SAMPLE             | 3              | Post 2 21 Aug   | Sample   |                |
| MARKER             | Post 2 21 Aug  | 1               | 148      | 31.82          |
| MARKER             | Post 2 21 Aug  | 2               | 386      | 33.04          |
| MARKER             | Post 2 21 Aug  | 3               | 748      | 31.48          |
| MARKER             | Post 2 21 Aug  | 4               | RNaseP   | 24.41          |
| SAMPLE             | 4              | Post 3 21 Aug   | Sample   |                |
| MARKER             | Post 3 21 Aug  | 1               | 148      | 37.63          |
| MARKER             | Post 3 21 Aug  | 2               | 386      | 38.1           |
| MARKER             | Post 3 21 Aug  | 3               | 748      | 38.1           |
| MARKER             | Post 3 21 Aug  | 4               | RNaseP . | 26.74          |
| CELL_FRACTION      | 1              | Post 1 21 Aug   | 148      | 6.58           |
| CELL_FRACTION      | 2              | Post 1 21 Aug   | 386      | 5.72           |
| CELL_FRACTION      | 3              | Post 1 21 Aug   | 748      | 6.36           |
| CELL_FRACTION      | 4              | Post 2 21 Aug   | 148      | 0.67           |
| CELL_FRACTION      | 5              | Post 2 21 Aug   | 386      | 0.56           |
| CELL_FRACTION      | 6              | Post 2 21 Aug   | 748      | 0.58           |
| CELL_FRACTION      | 7              | Post 3 21 Aug   | 148      | 0.06           |
| CELL_FRACTION      | 8              | Post 3 21 Aug   | 386      | 0.08           |
| CELL_FRACTION      | 9              | Post 3 21 Aug   | 748      | 0.03           |
| CELL_FRACTION_MEAN | 1              | Post 1 21 Aug   | 6.22     |                |
| CELL_FRACTION_MEAN | 2              | Post 2 21 Aug   | 0.6      |                |
| CELL_FRACTION_MEAN | 3              | Post 3 21 Aug   | 0.06     |                |

## **HPRIM Data Export**

#### Fonction d'export HPRIM

 a) Activer cette fonction dans 'Preference\Data and Reports', en cochant 'Allow HPRIM Reporting'

| late setup | Custom types    | Concentrations | Data a | nd Reports | Data locations | Material tracking | Users   | Language |
|------------|-----------------|----------------|--------|------------|----------------|-------------------|---------|----------|
| qPCR dP    | CR              |                |        |            | Laboratory 1   | Information       |         |          |
| Replicat   | e Highlightin   | g Method       |        |            | Department     | Technical Supp    | ort     |          |
| Method     | Value           |                |        |            | Institution    | JETA Molecula     | r       |          |
| ○ % CV     | 2               |                |        |            | Address        | Krommeweteri      | ing 101 | С        |
| SD         | 1               |                |        |            | Postal code, C | ity 3543 AN, Utre | cht     |          |
| 🔾 Cq Ran   | ge 0.5          |                |        |            | Telephone      | +316 5413 669     | 97      |          |
| Report I   | lighlighting    |                |        |            | Comment        |                   |         |          |
| Method     |                 |                | Low    | High       | Anonymous      | Reporting         |         |          |
| Replica    | te Highlighting |                |        |            |                | ymous Reporting   |         |          |
| Referen    | ice Sample Cq R | ange           | 24     | 28         | HPRIM Repo     | orting            |         |          |
| Referer    | ice Sample ∆Cq  |                | -1.5   | 1.5        | Allow HPRI     | ~                 |         |          |
| Monito     | ring Sample RNa | aseP Cq Range  | 20     | 24         |                | in hepotting      |         |          |
| Monito     | ring Sample RNa | aseP Cq Range  | 20     | 24         |                |                   |         |          |
|            |                 |                |        |            |                | Ok                | Can     | icel A   |

b) Créer un nouveau couple donneur- receveur

Les nouveaux champs sont encadrés en rouge.

| Re                                                                                                                       | cipient         | 1        |
|--------------------------------------------------------------------------------------------------------------------------|-----------------|----------|
| Recipient First Name                                                                                                     | 2               |          |
| Recipient Last Name                                                                                                      |                 |          |
| Recipient ID                                                                                                             |                 |          |
| Sample ID                                                                                                                |                 |          |
| DNA ID                                                                                                                   |                 |          |
| G-LIMS ID                                                                                                                |                 |          |
| Concentration ng/ul                                                                                                      | 100             |          |
| Date of Birth                                                                                                            | XX-XX-XXXX      | 15       |
| Date of Transplant                                                                                                       | XX-XX-XXX-XXXXX | 15       |
|                                                                                                                          |                 |          |
| Gender                                                                                                                   | O Male O Fem    | ale      |
|                                                                                                                          | ○ Male ○ Ferm   | ale      |
| Comment                                                                                                                  | O Male O Fem    | ale      |
| Comment<br>Disease Type                                                                                                  | O Male O Fem    | ale<br>v |
| Comment<br>Disease Type                                                                                                  |                 | ale<br>v |
| Comment<br>Disease Type<br>Donor First Name                                                                              |                 | ale<br>~ |
| Comment<br>Disease Type<br>Donor First Name<br>Donor Last Name                                                           |                 | ale<br>V |
| Gender<br>Comment<br>Disease Type<br>Donor First Name<br>Donor Last Name<br>Donor ID<br>Sample ID                        |                 | ale<br>V |
| Comment<br>Disease Type<br>Donor First Name<br>Donor Last Name<br>Donor ID<br>Sample ID                                  |                 | √ ×      |
| Comment<br>Disease Type<br>Donor First Name<br>Donor Last Name<br>Donor ID                                               |                 | v<br>√ > |
| Comment<br>Disease Type<br>Donor First Name<br>Donor Last Name<br>Donor ID<br>Sample ID<br>DNA ID<br>Concentration ng/ul |                 | 15<br>■  |
| Comment<br>Disease Type<br>Donor First Name<br>Donor Last Name<br>Donor ID<br>Sample ID<br>DNA ID                        | )onor           | v<br>V X |

#### Remarque importante:

Le numéro 'DNA ID' est un champ ajouté pour faciliter la préparation de la plaque. Le personnel technique du laboratoire peut y indiquer le numéro de son choix, celui-ci est affiché uniquement sur le protocole et sur le plan de plaque. Si celui-ci n'est pas renseigné lors de la création du patient, c'est le 'Sample ID' qui sera affiché sur le protocole.

c) Renseigner le nouveau champ '**Q-LIMS ID**'. Il apparait dans le bloc 'Recipient' après avoir sélectionné l'échantillon de référence pour le test de quantification.

| Recipient First Name         |              |     |
|------------------------------|--------------|-----|
| Recipient Last Name          |              |     |
| Recipient ID                 |              |     |
| Sample ID                    |              |     |
| DNA ID                       |              |     |
| G-LIMS ID                    |              |     |
| Concentration ng/ul          | 100          |     |
| Date of Birth                | XX-XX-XX00X  | 15  |
|                              | xx-xx-xxxx   | 15  |
| Date of Transplant           |              |     |
| Date of Transplant<br>Gender | O Male O Fem | ale |
|                              | O Male O Fem | ale |

d) Renseigner le nouveau bloc 'Prior Sample'.

Celui-ci permet de quantifier l'échantillon précédent. La préparation de cet échantillon sur la plaque ainsi que le calcul du résultat sont effectués comme un échantillon 'Post Sample'. Le % ADN est exporté dans le fichier HPRIM et il est imprimé sur le rapport.

Attention: Le résultat de l'échantillon 'Prior Sample' n'est pas affiché sur le graphique de suivi.

| Refere             | nce Sam             | ples             |
|--------------------|---------------------|------------------|
| Sample ID          | Concentration ng/ul | n %<br>reference |
|                    | 100                 | 100              |
|                    | 100                 | 100              |
| Pavel example      | 10                  | 100              |
| Ref Sample         | 10                  | 100              |
| Pric               | or Sample           | e 🗙              |
| Prior Sample ID    |                     |                  |
| DNA ID             |                     |                  |
| Concentration ng/u | 100                 |                  |
| Prior Sample Date  | XX-XX-XXX           | x 15             |
| Prior Sample Type  | O BM                | O Blood          |
|                    | O T Cells           | O B Cells        |
|                    | O DNA               |                  |
|                    | rior Sam            |                  |
| Pos                | t Sample            | × ×              |
| Sample ID          |                     |                  |
| DNA ID             |                     |                  |
| Concentration ng/u | 100                 |                  |
| Sample Date        | XX-XX-XXX           | x 15             |
| Sample Type        | O BM                | O Blood          |
|                    | O T Cells           | O B Cells        |
|                    | O DNA               |                  |
|                    | -                   |                  |

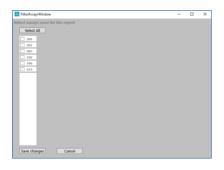
e) Valider les résultats

- Après avoir importé les résultats de qPCR de votre patient et après avoir vérifié les données de

votre plaque dans la fenêtre « Data analysis », cliquer sur le bouton 'Calculate'

- Le logiciel affiche alors les résultats de votre génotypage ou de votre quantification dans la fenêtre 'Result'.

Exemple: résultat de génotypage


|                           |               |        |        | Result                       |                              |                            |  |  |  |  |
|---------------------------|---------------|--------|--------|------------------------------|------------------------------|----------------------------|--|--|--|--|
| RECEVEUR 210 RECEVEUR 210 |               |        |        |                              |                              |                            |  |  |  |  |
| Marker                    | Chr. location | InfoCq | ∆Cq    | Informative for              | RECEVEUR 210<br>RECEVEUR 210 | DONNEUR 210<br>DONNEUR 210 |  |  |  |  |
| 209                       | 5q            | 31.46  | 2,6465 | RECEVEUR 210<br>RECEVEUR 210 | Positive                     | Negative                   |  |  |  |  |
| 235                       | 2q            | 31.03  | 2,2197 | RECEVEUR 210<br>RECEVEUR 210 | Positive                     | Negative                   |  |  |  |  |
| 267                       | 4q            | 30.7   | 1,6455 | DONNEUR 210<br>DONNEUR 210   | Negative                     | Positive                   |  |  |  |  |

Exemple: résultat de quantification

| Result  |           |             |        |      |      |         |           |  |  |
|---------|-----------|-------------|--------|------|------|---------|-----------|--|--|
| 4083384 | FIRST 408 | 3384 LAST 🕋 | í      |      |      |         |           |  |  |
| Sample  | Type      | Date        | Target | Chr. | ddCq | DNA (%) | Reference |  |  |
| 4081082 | Blood     | 05-05-2019  | 356    | 18q  | 4.45 | 4.59    | 4083384   |  |  |
| 4081082 | Blood     | 05-05-2019  | 721    | Xq   | 4.77 | 3.67    | 4083384   |  |  |
| 4099253 | B Cells   | 09-05-2019  | 356    | 18q  | 6.52 | 1.09    | 4083384   |  |  |
| 4099253 | B Cells   | 09-05-2019  | 721    | Xq   | 3.97 | 6.37    | 4083384   |  |  |

- Cliquer ensuite sur le bouton 'Select assays' Select assays'. Fonction autorisée ou non selon les droits de l'utilisateur.

- Une fenêtre s'ouvre pour sélectionner les marqueurs. Vous devez sélectionner les marqueurs de votre choix.



- Cliquer ensuite sur 'Save changes' pour valider vos résultats. Les boutons 'HPRIM Export' et 'Report' apparaissent alors.



f) Exporter un fichier HPRIM

- Cliquer sur le bouton 'HPRIM Export'. La fenêtre ci-dessous s'ouvre, puis choisir le dossier dans lequel le fichier HPRIM sera enregistré:

| echer | cher un dossier                        | × |
|-------|----------------------------------------|---|
|       |                                        |   |
|       |                                        |   |
| Bu    | reau                                   | ^ |
| > 📑   | OneDrive                               |   |
| > 2   | User                                   |   |
| - 🗖   | Ce PC                                  |   |
| _     | E Bureau                               |   |
| ~     | Documents                              |   |
|       | > Blocs-notes OneNote                  |   |
|       | > Bluetooth Folder                     |   |
|       | EXPERIMENT OTRACE                      |   |
|       |                                        | ~ |
|       | Bluetooth Folder     EXPERIMENT QTRACE |   |

## **Software Buttons**



Home Screen Return to the home screen of TRACE Analysis<sup>™</sup> Software



#### Add New Sample

Add a new recipient record to the database. A record will always require a recipient name, unique recipient identifier and a sample identifier.



#### **Add Typing Samples**

After entering recipient and donor specific information, choosing Screen will start creating a genotyping experiment by placing your samples on the plate.



#### Add Quant Samples

After selecting a recipient to monitor and entering sample specific information, the Quant button adds your sample to a monitoring experiment



#### **Export Setup to PCR** Export an experiment sample setup file for use with a PCR instrument.



**Import PCR Data** Import the .txt or .csv results file from your PCR instrument to review the data collected.



#### **Overview** Shows all available data for a transplantation: informative markers and quantitative analyses.



## Virtual Typing

Enables side-by-side comparison of genotypes of selected samples.



#### **Browse Experiments**

Browse all experiments previously created in TRACE Analysis<sup>™</sup> Software. By pressing the open button, you can re-open the imported data files.



#### Save

Update information about the recipients or donors.

Do not update information about the recipient or donor if there is PCR data waiting to be analyzed for them.



#### Print

Print all typing and monitoring results from the currently selected recipient data.



#### Preferences

Set your preferred instrument, sample types, number of replicates and disease types.



#### Help

Review this manual directly via TRACE Analysis<sup>™</sup> Software to search for useful tips, tricks and troubleshooting.



#### About

Technical information about TRACE Analysis<sup>™</sup> Software, such as version, license, contact information.

# ÷

Add Sample Add another sample.

# ×

**Remove** Remove a sample.

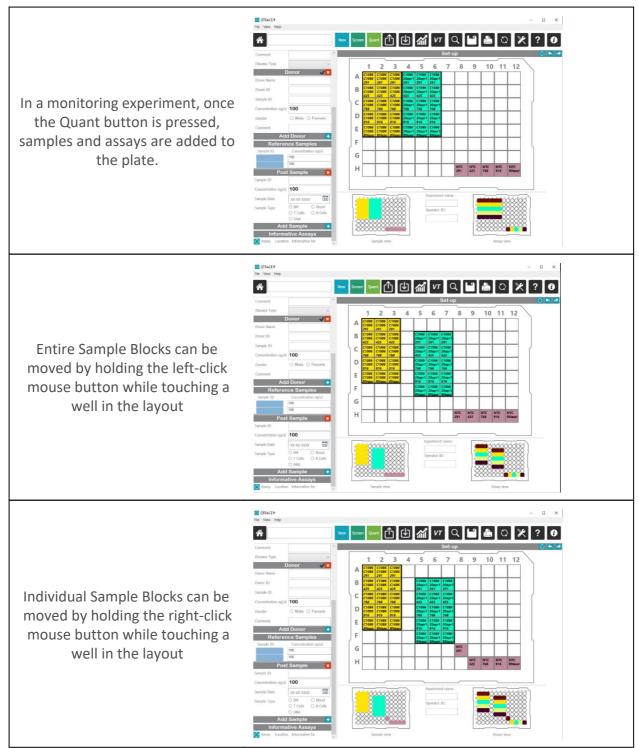


**Reset** Reset the experiment plate completely.



Undo

Reset the last placement onto the experimental plate.




## Redo

Reset the previous "Undo" action onto the experimental plate.

# **Drag and Drop Plate Layouts**

TRACE Analysis<sup>™</sup>, Version 1.5 introduced movable wells for customized plate layout capability. Once monitoring samples are placed onto the plate, the user has the ability to move a well from one location to another location. Whole sample groups can be moved by left-clicking and holding the mouse button. This action treats all the wells in a particular sample group the same, moving the entire block of wells. Right-clicking and holding the mouse button allows a user to move one well at a time.



# Anonymized Reporting

The ability to generate anonymized reports from TRACE Analysis<sup>™</sup> Software is an option in the Preferences.

On the 'Data and Reports' tab of the Preferences, there is a check box which allows for reports to be generated without the names of the recipient and donor(s) appearing on them.

| Plate setup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Custom types                    | Concentrations | Data a     | nd Reports | Data locations                        | Material tracking  | Users   | Language |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------|------------|------------|---------------------------------------|--------------------|---------|----------|--|
| qPCR dP0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CR                              |                |            |            | Laboratory 1                          | Information        |         |          |  |
| Replicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | e Highlightin                   | g Method       |            |            | Department                            | Technical Supp     | ort     |          |  |
| Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Value                           |                |            |            | Institution                           | JETA Molecula      | r       |          |  |
| ○ % CV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                               |                |            |            | Address                               | Krommeweter        | ing 101 | C        |  |
| SD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                               |                |            |            | Postal code, C                        | City 3543 AN, Utre | cht     |          |  |
| Cq Rang                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | e 0.5                           |                |            |            | Telephone                             | +316 5413 669      | 97      |          |  |
| Report H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ighlighting                     |                |            |            | Comment                               |                    |         |          |  |
| Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 |                | Low        | High       | Anonymous                             | Reporting          |         |          |  |
| Replicat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | e Highlighting                  |                |            |            |                                       |                    |         |          |  |
| Referen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ce Sample Cq R                  | ange           | 24         | 28         |                                       |                    |         |          |  |
| Referen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ce Sample ∆Cq                   |                | -1.5       | 1.5        |                                       | 5                  |         |          |  |
| Monitor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ing Sample RN                   | aseP Cq Range  | 20         | 24         |                                       | in nepoting        |         |          |  |
| Replicat Reference Refere | ce Sample Cq R<br>ce Sample ΔCq | -              | 24<br>-1.5 | 28         | Anonymous<br>Allow Anon<br>HPRIM Repo | nymous Reporting   |         |          |  |

With the 'Allow Anonymous Reporting' option checked, Reports generated from TRACE Analysis<sup>™</sup> Software will have the Recipient ID or the Donor ID replacing the name of the individuals.

The following is an example of a Transplantation Report (Recipient data overview) generated with the normal settings and the same report when 'Allow Anonymous Reporting' is checked. In this example, the recipient's name is "Receveur" and the donor's name is "Donneur." "EPT2017R" is the sample ID of the recipient pre-transplant sample.

|                                                                                     | Chim9-:                                                                       | 2                                                                                                                          | DNA    | 03-Nov-2017                                                                                                                                                           | 13                                                                                | 7 1p                                                                                                                             | 1                                                                                         | 10.31                                                                                                                | 0.08EPT2017R                                                                                         | Receveur |
|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------|
|                                                                                     | Chim9-                                                                        | 2                                                                                                                          | DNA    | 03-Nov-2017                                                                                                                                                           | 23                                                                                | 5 2q                                                                                                                             | 1                                                                                         | 10.43                                                                                                                | 0.07EPT2017R                                                                                         | Receveur |
|                                                                                     | Chim9-:                                                                       | 2                                                                                                                          | DNA    | 03-Nov-2017                                                                                                                                                           | 43                                                                                | 1 3q                                                                                                                             | 1                                                                                         | 10.32                                                                                                                | 0.08EPT2017R                                                                                         | Receveur |
|                                                                                     |                                                                               |                                                                                                                            |        |                                                                                                                                                                       |                                                                                   |                                                                                                                                  | N                                                                                         | lean:                                                                                                                | 0.08                                                                                                 |          |
|                                                                                     | Chim10                                                                        | -2                                                                                                                         | DNA    | 03-Nov-2017                                                                                                                                                           | 13                                                                                | 7 1p                                                                                                                             |                                                                                           | 9.35                                                                                                                 | 0.15 EPT2017R                                                                                        | Receveur |
|                                                                                     | Chim10                                                                        | -2                                                                                                                         | DNA    | 03-Nov-2017                                                                                                                                                           | 23                                                                                | 5 2q                                                                                                                             |                                                                                           | 9.54                                                                                                                 | 0.13EPT2017R                                                                                         | Receveur |
|                                                                                     | Chim10                                                                        | -2                                                                                                                         | DNA    | 03-Nov-2017                                                                                                                                                           | 43                                                                                | 1 3q                                                                                                                             |                                                                                           | 9.58                                                                                                                 | 0.13 EPT2017R                                                                                        | Receveur |
|                                                                                     |                                                                               |                                                                                                                            |        |                                                                                                                                                                       |                                                                                   |                                                                                                                                  | N                                                                                         | lean:                                                                                                                | 0.14                                                                                                 |          |
| Assay                                                                               | Locus                                                                         | Informativ                                                                                                                 | ve for | InfoCq                                                                                                                                                                | ∆Cq                                                                               | Recipient                                                                                                                        | Cq                                                                                        | Donor 1                                                                                                              | Cq                                                                                                   |          |
| 1                                                                                   |                                                                               |                                                                                                                            | ve for | InfoCq                                                                                                                                                                | ΔCq                                                                               | Recipient                                                                                                                        | Cq                                                                                        | Donor 1                                                                                                              | Cq                                                                                                   |          |
| ssay                                                                                |                                                                               |                                                                                                                            |        | InfoCq<br>31.69                                                                                                                                                       | ∆Cq<br>3.2                                                                        | Recipient<br>Positive                                                                                                            |                                                                                           | Donor 1<br>Negative                                                                                                  | Cq<br>40.0                                                                                           |          |
| ssay                                                                                | Locus                                                                         | Informativ                                                                                                                 |        |                                                                                                                                                                       |                                                                                   |                                                                                                                                  | 31.7                                                                                      |                                                                                                                      |                                                                                                      |          |
| ssay<br>907<br>854                                                                  | Locus<br>11q                                                                  | Receveur                                                                                                                   |        | 31.69                                                                                                                                                                 | 3.2                                                                               | Positive                                                                                                                         | 31.7                                                                                      | Negative                                                                                                             | 40.0                                                                                                 |          |
| 907<br>854<br>840                                                                   | Locus<br>11q<br>12q                                                           | Informativ<br>Receveur<br>Receveur                                                                                         |        | 31.69 29.32                                                                                                                                                           | 3.2<br>0.83                                                                       | Positive                                                                                                                         | 31.7<br>29.3<br>39.0                                                                      | Negative<br>Negative                                                                                                 | 40.0                                                                                                 |          |
| 307<br>307<br>854<br>840<br>824                                                     | Locus<br>11q<br>12q<br>9q                                                     | Receveur<br>Receveur<br>Donneur                                                                                            |        | 31.69<br>29.32<br>29.54                                                                                                                                               | 3.2<br>0.83<br>1.71                                                               | Positive<br>Positive<br>Negative                                                                                                 | 31.7<br>29.3<br>39.0<br>28.8                                                              | Negative<br>Negative<br>Positive                                                                                     | 40.0<br>40.0<br>29.5                                                                                 |          |
| ssay<br>907<br>854<br>840<br>824<br>768                                             | Locus<br>11q<br>12q<br>9q<br>22q                                              | Receveur<br>Receveur<br>Donneur<br>Receveur                                                                                |        | 31.69<br>29.32<br>29.54<br>28.76                                                                                                                                      | 3.2<br>0.83<br>1.71<br>0.28                                                       | Positive<br>Positive<br>Negative<br>Positive                                                                                     | 31.7<br>29.3<br>39.0<br>28.8<br>40.0                                                      | Negative<br>Negative<br>Positive<br>Negative                                                                         | 40.0<br>40.0<br>29.5<br>38.9                                                                         |          |
| ssay<br>907<br>854<br>840<br>824<br>768<br>736                                      | Locus<br>11q<br>12q<br>9q<br>22q<br>18q                                       | Informativ<br>Receveur<br>Receveur<br>Donneur<br>Receveur<br>Donneur                                                       |        | 31.69<br>29.32<br>29.54<br>28.76<br>30.87                                                                                                                             | 3.2<br>0.83<br>1.71<br>0.28<br>3.04                                               | Positive<br>Positive<br>Negative<br>Positive<br>Negative                                                                         | 31.7<br>29.3<br>39.0<br>28.8<br>40.0<br>40.0                                              | Negative<br>Negative<br>Positive<br>Negative<br>Positive                                                             | 40.0<br>40.0<br>29.5<br>38.9<br>30.9                                                                 |          |
| 3554<br>907<br>854<br>840<br>824<br>768<br>736<br>710                               | Locus<br>11q<br>12q<br>9q<br>22q<br>18q<br>Xp                                 | Information<br>Receveur<br>Donneur<br>Receveur<br>Donneur<br>Donneur<br>Donneur                                            |        | 31.69<br>29.32<br>29.54<br>28.76<br>30.87<br>29.15                                                                                                                    | 3.2<br>0.83<br>1.71<br>0.28<br>3.04<br>1.32                                       | Positive<br>Positive<br>Negative<br>Positive<br>Negative<br>Negative                                                             | 31.7<br>29.3<br>39.0<br>28.8<br>40.0<br>40.0<br>40.0                                      | Negative<br>Negative<br>Positive<br>Negative<br>Positive<br>Positive                                                 | 40.0<br>40.0<br>29.5<br>38.9<br>30.9<br>29.2                                                         |          |
| ssay<br>907<br>854<br>840<br>824<br>768<br>736<br>736<br>710<br>706                 | Locus<br>11q<br>12q<br>9q<br>22q<br>18q<br>Xp<br>5q                           | Information<br>Receveur<br>Donneur<br>Receveur<br>Donneur<br>Donneur<br>Donneur<br>Donneur                                 |        | 31.69<br>29.32<br>29.54<br>28.76<br>30.87<br>29.15<br>30.43                                                                                                           | 3.2<br>0.83<br>1.71<br>0.28<br>3.04<br>1.32<br>2.6                                | Positive<br>Positive<br>Negative<br>Negative<br>Negative<br>Negative                                                             | 31.7<br>29.3<br>39.0<br>28.8<br>40.0<br>40.0<br>40.0<br>40.0                              | Negative<br>Negative<br>Positive<br>Negative<br>Positive<br>Positive<br>Positive                                     | 40.0<br>40.0<br>29.5<br>38.9<br>30.9<br>29.2<br>30.4                                                 |          |
| 35589<br>907<br>854<br>840<br>824<br>768<br>736<br>710<br>706<br>550                | Locus<br>11q<br>12q<br>9q<br>22q<br>18q<br>Xp<br>5q<br>16p                    | Information<br>Receveur<br>Donneur<br>Receveur<br>Donneur<br>Donneur<br>Donneur<br>Donneur<br>Donneur                      |        | 31.69<br>29.32<br>29.54<br>28.76<br>30.87<br>29.15<br>30.43<br>29.62                                                                                                  | 3.2<br>0.83<br>1.71<br>0.28<br>3.04<br>1.32<br>2.6<br>1.79                        | Positive<br>Positive<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative                                                 | 31.7<br>29.3<br>39.0<br>28.8<br>40.0<br>40.0<br>40.0<br>40.0<br>40.0                      | Negative<br>Negative<br>Positive<br>Positive<br>Positive<br>Positive<br>Positive<br>Positive                         | 40.0<br>40.0<br>29.5<br>38.9<br>30.9<br>29.2<br>30.4<br>29.6                                         |          |
| assay<br>907<br>854<br>840<br>824<br>768<br>736<br>710<br>706<br>650<br>634         | Locus<br>11q<br>12q<br>9q<br>22q<br>18q<br>Xp<br>5q<br>16p<br>7q              | Information<br>Receveur<br>Donneur<br>Receveur<br>Donneur<br>Donneur<br>Donneur<br>Donneur<br>Donneur<br>Donneur           |        | 31.69<br>29.32<br>29.54<br>28.76<br>30.87<br>29.15<br>30.43<br>29.62<br>29.96                                                                                         | 3.2<br>0.83<br>1.71<br>0.28<br>3.04<br>1.32<br>2.6<br>1.79<br>2.13                | Positive<br>Positive<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative                                     | 31.7<br>29.3<br>39.0<br>28.8<br>40.0<br>40.0<br>40.0<br>40.0<br>40.0<br>40.0              | Negative<br>Negative<br>Positive<br>Positive<br>Positive<br>Positive<br>Positive<br>Positive<br>Positive             | 40.0<br>40.0<br>29.5<br>38.9<br>30.9<br>29.2<br>30.4<br>29.6<br>30.0                                 |          |
| 4558ay<br>907<br>854<br>840<br>824<br>768<br>736<br>710<br>706<br>650<br>634<br>548 | Locus<br>11q<br>12q<br>9q<br>22q<br>18q<br>Xp<br>5q<br>16p<br>7q<br>11q       | Informativ<br>Receveur<br>Donneur<br>Receveur<br>Donneur<br>Donneur<br>Donneur<br>Donneur<br>Donneur<br>Donneur<br>Donneur |        | 31.69           29.32           29.54           28.76           30.87           29.15           30.43           29.62           29.96           28.99                 | 3.2<br>0.83<br>1.71<br>0.28<br>3.04<br>1.32<br>2.6<br>1.79<br>2.13<br>1.16        | Positive<br>Positive<br>Negative<br>Positive<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative             | 31.7<br>29.3<br>39.0<br>28.8<br>40.0<br>40.0<br>40.0<br>40.0<br>40.0<br>40.0<br>40.0<br>4 | Negative<br>Negative<br>Positive<br>Positive<br>Positive<br>Positive<br>Positive<br>Positive<br>Positive             | 40.0<br>40.0<br>29.5<br>38.9<br>30.9<br>29.2<br>30.4<br>29.6<br>30.0<br>29.6<br>30.0<br>29.0         |          |
| -                                                                                   | Locus<br>11q<br>12q<br>9q<br>22q<br>18q<br>Xp<br>5q<br>16p<br>7q<br>11q<br>Xq | Informativ<br>Receveur<br>Donneur<br>Receveur<br>Donneur<br>Donneur<br>Donneur<br>Donneur<br>Donneur<br>Donneur<br>Donneur |        | 31.69           29.32           29.54           28.76           30.87           29.15           30.43           29.62           29.96           28.99           28.33 | 3.2<br>0.83<br>1.71<br>0.28<br>3.04<br>1.32<br>2.6<br>1.79<br>2.13<br>1.16<br>0.5 | Positive<br>Positive<br>Negative<br>Positive<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative | 31.7<br>29.3<br>39.0<br>28.8<br>40.0<br>40.0<br>40.0<br>40.0<br>40.0<br>40.0<br>40.0<br>4 | Negative<br>Negative<br>Positive<br>Positive<br>Positive<br>Positive<br>Positive<br>Positive<br>Positive<br>Positive | 40.0<br>40.0<br>29.5<br>38.9<br>30.9<br>29.2<br>30.4<br>29.6<br>30.0<br>29.6<br>30.0<br>29.0<br>28.3 |          |

The following is the same report with anonymization of the individuals in the report. Where names existed before, now the sample ID of the individual is displayed.

|                                                                                                 | Chim9-2                                                                       | 2                                                                                                                                                        | DNA                                                                                                                                      | 03-Nov-2017                                                                                     | 137                                                                               | 1p                                                                                                                                           | 1                                                                                         | 0.31                                                                                                                 | 0.08EPT2017R                                                                                         | [ID:EPT2017R  |
|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------|
|                                                                                                 | Chim9-2                                                                       | 2                                                                                                                                                        | DNA                                                                                                                                      | 03-Nov-2017                                                                                     | 235                                                                               | 2q                                                                                                                                           | 1                                                                                         | 0.43                                                                                                                 | 0.07 EPT2017R                                                                                        | [ID:EPT2017R  |
|                                                                                                 | Chim9-2                                                                       | 2                                                                                                                                                        | DNA                                                                                                                                      | 03-Nov-2017                                                                                     | 434                                                                               | 3q                                                                                                                                           | 1                                                                                         | 0.32                                                                                                                 | 0.08 EPT2017R                                                                                        | [ID:EPT2017R  |
|                                                                                                 |                                                                               |                                                                                                                                                          |                                                                                                                                          |                                                                                                 |                                                                                   |                                                                                                                                              | M                                                                                         | lean:                                                                                                                | 0.08                                                                                                 |               |
|                                                                                                 | Chim10                                                                        | -2                                                                                                                                                       | DNA                                                                                                                                      | 03-Nov-2017                                                                                     | 137                                                                               | 1p                                                                                                                                           |                                                                                           | 9.35                                                                                                                 | 0.15 EPT2017R                                                                                        | [ID:EPT2017R  |
|                                                                                                 | Chim10                                                                        | -2                                                                                                                                                       | DNA                                                                                                                                      | 03-Nov-2017                                                                                     | 235                                                                               | 2q                                                                                                                                           |                                                                                           | 9.54                                                                                                                 | 0.13EPT2017R                                                                                         | [ID:EPT2017R] |
|                                                                                                 | Chim10                                                                        | -2                                                                                                                                                       | DNA                                                                                                                                      | 03-Nov-2017                                                                                     | 434                                                                               | 3q                                                                                                                                           |                                                                                           | 9.58                                                                                                                 | 0.13 EPT2017R                                                                                        | [ID:EPT2017R] |
|                                                                                                 |                                                                               |                                                                                                                                                          |                                                                                                                                          |                                                                                                 |                                                                                   |                                                                                                                                              | M                                                                                         | lean:                                                                                                                | 0.14                                                                                                 |               |
| Infon                                                                                           | Locus                                                                         | ssays<br>Informat                                                                                                                                        | ive for                                                                                                                                  | InfoCq                                                                                          | ACq                                                                               | Recipient                                                                                                                                    | Cq                                                                                        | Donor 1                                                                                                              | Cq                                                                                                   |               |
| -                                                                                               |                                                                               |                                                                                                                                                          |                                                                                                                                          |                                                                                                 |                                                                                   |                                                                                                                                              |                                                                                           |                                                                                                                      |                                                                                                      |               |
| ssay                                                                                            | Locus                                                                         | Informat                                                                                                                                                 |                                                                                                                                          |                                                                                                 |                                                                                   |                                                                                                                                              |                                                                                           |                                                                                                                      |                                                                                                      |               |
| ssay                                                                                            | Locus<br>11q                                                                  | Informat                                                                                                                                                 | 017R]                                                                                                                                    | 31.69                                                                                           | 3.2                                                                               | Positive                                                                                                                                     | 31.7                                                                                      | Negative                                                                                                             | 40.0                                                                                                 |               |
| ssay<br>107                                                                                     | Locus<br>11q<br>12q                                                           | Informat<br>[ID:EPT2<br>[ID:EPT2                                                                                                                         | 017R]                                                                                                                                    | 31.69<br>29.32                                                                                  | 3.2<br>0.83                                                                       | Positive<br>Positive                                                                                                                         | 31.7                                                                                      | Negative<br>Negative                                                                                                 | 40.0                                                                                                 |               |
| 07<br>54<br>40                                                                                  | Locus<br>11q<br>12q<br>9q                                                     | Informat<br>(ID:EPT2<br>(ID:EPT2<br>(ID:EPT2                                                                                                             | 017R]<br>017R]<br>017D]                                                                                                                  | 31.69<br>29.32<br>29.54                                                                         | 3.2<br>0.83<br>1.71                                                               | Positive<br>Positive<br>Negative                                                                                                             | 31.7<br>29.3<br>39.0                                                                      | Negative<br>Negative<br>Positive                                                                                     | 40.0<br>40.0<br>29.5                                                                                 |               |
| ssay<br>907<br>354<br>340<br>324                                                                | Locus<br>11q<br>12q<br>9q<br>22q                                              | Informat<br>[ID:EPT2<br>[ID:EPT2<br>[ID:EPT2<br>[ID:EPT2                                                                                                 | 017R]<br>017R]<br>017D]<br>017R]                                                                                                         | 31.69<br>29.32<br>29.54<br>28.76                                                                | 3.2<br>0.83<br>1.71<br>0.28                                                       | Positive<br>Positive<br>Negative<br>Positive                                                                                                 | 31.7<br>29.3<br>39.0<br>28.8                                                              | Negative<br>Negative<br>Positive<br>Negative                                                                         | 40.0<br>40.0<br>29.5<br>38.9                                                                         |               |
| ssay<br>107<br>154<br>140<br>124                                                                | Locus<br>11q<br>12q<br>9q                                                     | Informat<br>(ID:EPT2<br>(ID:EPT2<br>(ID:EPT2                                                                                                             | 2017R]<br>2017R]<br>2017D]<br>2017R]<br>2017D]                                                                                           | 31.69<br>29.32<br>29.54                                                                         | 3.2<br>0.83<br>1.71                                                               | Positive<br>Positive<br>Negative                                                                                                             | 31.7<br>29.3<br>39.0<br>28.8<br>40.0                                                      | Negative<br>Negative<br>Positive                                                                                     | 40.0<br>40.0<br>29.5                                                                                 |               |
| 558ay<br>907<br>854<br>840<br>824<br>768<br>736                                                 | Locus<br>11q<br>12q<br>9q<br>22q<br>18q                                       | Informat<br>[ID:EPT2<br>[ID:EPT2<br>[ID:EPT2<br>[ID:EPT2<br>[ID:EPT2                                                                                     | 017R]<br>2017R]<br>2017D]<br>2017R]<br>2017D]<br>2017D]                                                                                  | 31.69<br>29.32<br>29.54<br>28.76<br>30.87                                                       | 3.2<br>0.83<br>1.71<br>0.28<br>3.04                                               | Positive<br>Positive<br>Negative<br>Positive<br>Negative                                                                                     | 31.7<br>29.3<br>39.0<br>28.8<br>40.0<br>40.0                                              | Negative<br>Negative<br>Positive<br>Negative<br>Positive                                                             | 40.0<br>40.0<br>29.5<br>38.9<br>30.9                                                                 |               |
| ssay<br>907<br>354<br>340<br>324<br>768<br>736<br>710                                           | Locus<br>11q<br>12q<br>9q<br>22q<br>18q<br>Xp                                 | (ID:EPT2<br>(ID:EPT2<br>(ID:EPT2<br>(ID:EPT2<br>(ID:EPT2<br>(ID:EPT2<br>(ID:EPT2                                                                         | 2017R]<br>2017R]<br>2017D]<br>2017D]<br>2017D]<br>2017D]<br>2017D]                                                                       | 31.69<br>29.32<br>29.54<br>28.76<br>30.87<br>29.15                                              | 3.2<br>0.83<br>1.71<br>0.28<br>3.04<br>1.32                                       | Positive<br>Positive<br>Negative<br>Negative<br>Negative                                                                                     | 31.7<br>29.3<br>39.0<br>28.8<br>40.0<br>40.0<br>40.0                                      | Negative<br>Negative<br>Positive<br>Negative<br>Positive<br>Positive                                                 | 40.0<br>40.0<br>29.5<br>38.9<br>30.9<br>29.2                                                         |               |
| ssay<br>907<br>354<br>340<br>324<br>768<br>736<br>736<br>710<br>706                             | Locus<br>11q<br>12q<br>9q<br>22q<br>18q<br>Xp<br>5q                           | Informat<br>[ID:EPT2<br>[ID:EPT2<br>[ID:EPT2<br>[ID:EPT2<br>[ID:EPT2<br>[ID:EPT2<br>[ID:EPT2<br>[ID:EPT2                                                 | 017R]<br>017R]<br>017D]<br>017D]<br>017D]<br>017D]<br>017D]<br>017D]<br>017D]                                                            | 31.69<br>29.32<br>29.54<br>28.76<br>30.87<br>29.15<br>30.43                                     | 3.2<br>0.83<br>1.71<br>0.28<br>3.04<br>1.32<br>2.6                                | Positive<br>Positive<br>Negative<br>Negative<br>Negative<br>Negative                                                                         | 31.7<br>29.3<br>39.0<br>28.8<br>40.0<br>40.0<br>40.0<br>40.0                              | Negative<br>Negative<br>Positive<br>Negative<br>Positive<br>Positive<br>Positive                                     | 40.0<br>40.0<br>29.5<br>38.9<br>30.9<br>29.2<br>30.4                                                 |               |
| ssay<br>107<br>154<br>140<br>124<br>168<br>136<br>106<br>106<br>150                             | Locus<br>11q<br>12q<br>9q<br>22q<br>18q<br>Xp<br>5q<br>16p                    | Informat<br>[ID:EPT2<br>[ID:EPT2<br>[ID:EPT2<br>[ID:EPT2<br>[ID:EPT2<br>[ID:EPT2<br>[ID:EPT2<br>[ID:EPT2<br>[ID:EPT2                                     | 017R]<br>017R]<br>017D]<br>017D]<br>017D]<br>017D]<br>017D]<br>017D]<br>017D]<br>017D]                                                   | 31.69<br>29.32<br>29.54<br>28.76<br>30.87<br>29.15<br>30.43<br>29.62                            | 3.2<br>0.83<br>1.71<br>0.28<br>3.04<br>1.32<br>2.6<br>1.79                        | Positive<br>Positive<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative                                                             | 31.7<br>29.3<br>39.0<br>28.8<br>40.0<br>40.0<br>40.0<br>40.0<br>40.0                      | Negative<br>Negative<br>Positive<br>Positive<br>Positive<br>Positive<br>Positive<br>Positive                         | 40.0<br>40.0<br>29.5<br>38.9<br>30.9<br>29.2<br>30.4<br>29.6                                         |               |
| 07<br>54<br>40<br>24<br>68<br>36<br>10<br>06<br>50<br>34                                        | Locus<br>11q<br>12q<br>9q<br>22q<br>18q<br>Xp<br>5q<br>16p<br>7q              | Informat<br>[ID:EPT2<br>[ID:EPT2<br>[ID:EPT2<br>[ID:EPT2<br>[ID:EPT2<br>[ID:EPT2<br>[ID:EPT2<br>[ID:EPT2                                                 | 2017R]<br>2017R]<br>2017D]<br>2017D]<br>2017D]<br>2017D]<br>2017D]<br>2017D]<br>2017D]<br>2017D]<br>2017D]                               | 31.69<br>29.32<br>29.54<br>28.76<br>30.87<br>29.15<br>30.43<br>29.62<br>29.96                   | 3.2<br>0.83<br>1.71<br>0.28<br>3.04<br>1.32<br>2.6<br>1.79<br>2.13                | Positive<br>Positive<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative                                                 | 31.7<br>29.3<br>39.0<br>28.8<br>40.0<br>40.0<br>40.0<br>40.0<br>40.0<br>40.0              | Negative<br>Negative<br>Positive<br>Positive<br>Positive<br>Positive<br>Positive<br>Positive                         | 40.0<br>40.0<br>29.5<br>38.9<br>30.9<br>29.2<br>30.4<br>29.6<br>30.0                                 |               |
| ssay<br>907<br>854<br>840<br>824<br>768<br>736<br>736<br>736<br>710<br>706<br>650<br>634<br>548 | Locus<br>11q<br>12q<br>9q<br>22q<br>18q<br>Xp<br>5q<br>16p<br>7q<br>11q       | Informat<br>[ID:EPT2<br>[ID:EPT2<br>[ID:EPT2<br>[ID:EPT2<br>[ID:EPT2<br>[ID:EPT2<br>[ID:EPT2<br>[ID:EPT2<br>[ID:EPT2<br>[ID:EPT2                         | 017R]<br>017R]<br>017D]<br>017D]<br>017D]<br>017D]<br>017D]<br>017D]<br>017D]<br>017D]<br>017D]<br>017D]                                 | 31.69<br>29.32<br>29.54<br>28.76<br>30.87<br>29.15<br>30.43<br>29.62<br>29.96<br>28.99          | 3.2<br>0.83<br>1.71<br>0.28<br>3.04<br>1.32<br>2.6<br>1.79<br>2.13<br>1.16        | Positive<br>Positive<br>Negative<br>Positive<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative             | 31.7<br>29.3<br>39.0<br>28.8<br>40.0<br>40.0<br>40.0<br>40.0<br>40.0<br>40.0<br>40.0      | Negative<br>Negative<br>Positive<br>Positive<br>Positive<br>Positive<br>Positive<br>Positive<br>Positive             | 40.0<br>40.0<br>29.5<br>38.9<br>30.9<br>29.2<br>30.4<br>29.6<br>30.0<br>29.6<br>30.0<br>29.0         |               |
|                                                                                                 | Locus<br>11q<br>12q<br>9q<br>22q<br>18q<br>Xp<br>5q<br>16p<br>7q<br>11q<br>Xq | Informat<br>[ID:EPT2<br>[ID:EPT2<br>[ID:EPT2<br>[ID:EPT2<br>[ID:EPT2<br>[ID:EPT2<br>[ID:EPT2<br>[ID:EPT2<br>[ID:EPT2<br>[ID:EPT2<br>[ID:EPT2<br>[ID:EPT2 | 1017R]<br>1017R]<br>1017D]<br>1017D]<br>1017D]<br>1017D]<br>1017D]<br>1017D]<br>1017D]<br>1017D]<br>1017D]<br>1017D]<br>1017D]<br>1017D] | 31.69<br>29.32<br>29.54<br>28.76<br>30.87<br>29.15<br>30.43<br>29.62<br>29.96<br>28.99<br>28.33 | 3.2<br>0.83<br>1.71<br>0.28<br>3.04<br>1.32<br>2.6<br>1.79<br>2.13<br>1.16<br>0.5 | Positive<br>Positive<br>Negative<br>Positive<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative | 31.7<br>29.3<br>39.0<br>28.8<br>40.0<br>40.0<br>40.0<br>40.0<br>40.0<br>40.0<br>40.0<br>4 | Negative<br>Negative<br>Positive<br>Positive<br>Positive<br>Positive<br>Positive<br>Positive<br>Positive<br>Positive | 40.0<br>40.0<br>29.5<br>38.9<br>30.9<br>29.2<br>30.4<br>29.6<br>30.0<br>29.6<br>30.0<br>29.0<br>28.3 |               |

# **Modification of Existing Data**

TRACE Analysis<sup>™</sup> Software v2.0 allows for modification of some data associated with recipients, samples, transplantation dates and experiments.

To make changes to existing files, select the Data Management item from the File Menu

| File | View Help       |        |    |     |        |    |
|------|-----------------|--------|----|-----|--------|----|
|      | New             | Ctrl+N |    |     |        |    |
|      | Home            | Alt+H  |    | New | Screen | Qu |
|      | Preferences     | Alt+P  |    |     |        |    |
|      | Plate editor    | Alt+E  |    |     |        |    |
|      | Data management | Alt+D  | 1  |     |        |    |
|      | Migrate data    | Alt+M  | R  |     |        |    |
|      | Custom reports  | Alt+R  | n. |     |        |    |
|      | Exit            |        |    |     |        |    |

Selecting from the four different buttons allows users to edit some information related to these topics.



The 'D/R Info' button allows editing of Donor and Recipient information.

| (a)                   |             |    |         | -    | > |
|-----------------------|-------------|----|---------|------|---|
|                       |             | D  | /R Info |      |   |
| Donor or Recipient ID |             |    |         |      |   |
| FirstName             |             |    |         |      |   |
| LastName              |             |    |         |      |   |
| Date of Birth         | XX-XX-XX0XX | 15 |         |      |   |
| Gender                |             | ~  |         |      |   |
| Comments              |             |    |         |      |   |
|                       |             |    | Cancel  | Save |   |

Sample Information may be edited by pushing the 'Samples' button.



The 'Transplantations' button allows edits to Date of Transplant.

| ф.                        |             |         |        | -   |   | × |
|---------------------------|-------------|---------|--------|-----|---|---|
|                           | Trar        | nsplant | tation |     |   |   |
| Recipient ID              |             |         |        |     |   |   |
| Date of Transplant        | XX-XX-XXXXX | 15      |        |     |   |   |
| Date of Second Transplant | XX-XX-XXXXX | 15      |        |     |   |   |
| Export                    |             |         | Cancel | Sav | е |   |
| Anonymize export          |             |         |        |     |   |   |

The 'Experiments' button allows experiments to be edited and deleted.

| (J)                |                                   |                            |           | -        |          | ×  |
|--------------------|-----------------------------------|----------------------------|-----------|----------|----------|----|
|                    | Experi                            | ment                       |           |          |          |    |
| Name               |                                   |                            |           |          |          |    |
| Operator ID        |                                   |                            |           |          |          |    |
| Date of experiment | XX-XX-XXXX 15                     |                            |           |          |          |    |
|                    |                                   | Cancel                     |           | Save     |          |    |
| Delete             | Warning! This will delete the exp | periment with all its rela | ated data | a with n | o returr | 1. |
| Export             |                                   |                            |           |          |          |    |
| Anonymize export   |                                   |                            |           |          |          |    |

# **Data Analysis Algorithms**

The algorithms implemented in the TRACE Analysis<sup>™</sup> Software are designed to provide reliable analysis results based upon specific data criteria. Quality measurements, based upon the same data criteria, provide the operator with valuable information regarding data integrity.

The algorithms and quality measurements are invoked when the operator initiates data analysis through the TRACE Analysis<sup>™</sup> Software. Separate algorithms and quality measurements exist for both the genotyping and quantitation tests. Warning messages generated from the quality measurements are provided when calculated results fall outside established data criteria ranges.

# The QTRACE<sup>®</sup> Analysis System

The data criteria used in the algorithms and quality measurements are not operator configurable. Cq data will need to be exported from the qPCR Software and manipulated in a spreadsheet program if another method of data analysis is desired.

## **Genotyping Test Algorithm**

The genotyping test algorithm determines the marker state for each assay/sample reaction followed by the informative state for each assay. Quality measurements are performed after the algorithm has been applied to the data. There are three possible marker states for each reaction in regards to amplification: positive, negative, or atypical.

#### **Marker States**

#### Positive

An Amplification Control reaction (positive control with QTRACE<sup>®</sup> RNaseP Assay; wells D11 and H11 in the standard QTRACE<sup>®</sup> Genotyping Plate) is positive for amplification with a Cq value less than 34.0.

A reaction with any QTRACE<sup>®</sup> INDEL Assay is positive for amplification if the  $\Delta$ Cq (the difference in Cq values between the reaction and the Amplification Control) is within an acceptable range. If the Amplification Control is positive, then each of the reactions on the plate must have a  $\Delta$ Cq of -2.0 to +3.5 to be considered positive.

*Note*: An NTC reaction (negative control with QTRACE<sup>®</sup> RNaseP Assay; wells D12 and H12) can only be negative or atypical.

## Negative

An Amplification Control reaction is negative for amplification with a Cq value greater than or equal to 34.0.

All other reactions including the NTC reaction are negative with a Cq value greater than or equal to 38.0.

## Atypical

An NTC reaction is classified as atypical if the Cq value is less than 38.0. A "+" sign for an NTC reaction represents the atypical result in the Analysis View. This is assigned to atypical NTC reactions when quality measurements are assessed.

A reaction with any QTRACE<sup>®</sup> INDEL Assay will have atypical amplification if the  $\Delta$ Cq (the difference in Cq values between the reaction and the Amplification Control) is outside the acceptable ranges defined in the algorithm settings outlined above under the Marker States – Positive section. The exception to this rule is if the assay has already been classified as negative for amplification in which case the marker state will remain as negative. A large number of atypical reactions for a sample is usually indicative of low input copy number (DNA quantity) for that particular sample.

*Note*: An Amplification Control reaction can only be positive or negative.

## **Informative States**

Once marker state has been determined, the genotyping test algorithm compares the marker states between two DNA samples on a plate for each assay to determine informativity. There are three possible informative states for any QTRACE<sup>®</sup> INDEL Assay that can be applied to each assay result:

informative, not informative, or undetermined. There are two possible informative states for the control assays using QTRACE<sup>®</sup> RNaseP Assay: pass or fail.

## Informative

An assay is informative for a pair of DNA samples if one of the samples is positive for amplification and the other sample is negative.

## Not Informative

An assay is not informative for a pair of DNA samples if both samples are positive for amplification or if both samples are negative for amplification.

## Undetermined

An assay is undetermined for a pair of DNA samples if one of the two samples has an atypical reaction result. Assays with an undetermined result are not informative and should not be selected for use in quantitation for the associated pair of DNA samples.

#### Pass

The Amplification Control reactions in wells D11 and H11 will be labeled as pass if they are positive for amplification. The NTC reactions in wells D12 and D12 will be labeled as pass if they are negative for amplification.

#### Fail

The Amplification Control reactions in wells D11 and H11 will be labeled as fail if they are negative for amplification. The NTC reactions in wells D12 and H12 will be labeled as fail if they are atypical for amplification.

## **Genotyping Test Quality Measurements**

There are two types of quality measurements provided in the genotyping test analysis: Amplification Control and NTC. Genotyping test quality measurements are not used during application of the algorithm to the data. They are presented in the Report View to inform the operator of data integrity. A warning message providing more detail accompanies each quality measurement that fails.

## Amplification Control

The Amplification Control quality measurement serves as a positive PCR control for each sample.

The monomorphic RNase P locus for QTRACE<sup>®</sup> RNaseP Assay is present in all samples. The Amplification Control reactions are located in wells D11 and H11: one reaction for each sample. The result for this control is determined to be either pass or fail.

The Cq threshold for the Amplification Control is 34.0. If the Amplification Control has a Cq value of less than 34.0 then the Amplification Control is determined as pass. If the Amplification Control has a Cq value of greater than or equal to 34.0 then the Amplification Control is determined as fail.

If the Amplification Control for a particular sample fails, then all reactions for that sample that have a Cq value less than 38.0 will have an atypical marker state. This occurs because no reliable  $\Delta$ Cq can be calculated for any of the reactions run with this sample. It follows that the resulting informative state for each assay will be labeled as undetermined.

#### NTC

The NTC (No Template Control) quality measurement is determined as pass or fail per sample. The NTC reactions are located in wells D12 and H2: one reaction for each sample. In addition to the Report View.

The Cq threshold for the NTC is 38.0. If the NTC has a Cq value greater than or equal to 38.0 then the NTC is determined as pass. If the NTC has a Cq value less than 38.0 then the NTC is determined as fail.

#### **Quantification Test Algorithm**

The quantification test algorithm performs the steps necessary to generate percent determinations for the DNA of interest in a mixed sample.

#### **Relative Quantification Background**

Four possible combinations of samples and assays comprise a single quantification determination.

There will always be a reference sample and one unknown sample referred to generically as "sample". The reference sample is most commonly a DNA specimen from the individual whose DNA is to be quantified in the mixed unknown sample. Relative quantification requires that a reference sample mean Cq value is compared to the sample mean Cq value. There will always be a reference assay (RNaseP Assay) and one informative quantification assay referred to generically as "assay".

The reference assay is used to normalize for total DNA input amount among all reactions. To obtain the four possible combinations of samples and assays, the reference sample and unknown sample are each amplified with the reference assay and informative quantitative assay: Reference Sample/Reference Assay, Reference Sample/Assay, Sample/Reference Assay, and Sample/Assay. These reaction combinations all belong to a common Transplantation. A Transplantation contains a unique reference sample and all associated samples to be quantified in relation to the reference sample.

Quantification is performed using an established relative quantification method for real-time PCR also known as the  $\Delta\Delta$ Cq method (Livak and Schmittgen, 2001). A sample calculation is outlined in the table below.

QTRACE<sup>®</sup> INDEL Assay 854 is the Assay and QTRACE<sup>®</sup> RNaseP Assay is the Reference Assay.

| Well      | Sample Name | Sample Type           | Assay  | Cq    | Mean Cq | ∆Cq  | ΔΔCq | 2 <sup>(-ΔΔCq)</sup> | Mean % DNA |
|-----------|-------------|-----------------------|--------|-------|---------|------|------|----------------------|------------|
| <b>B4</b> | Sample 1    | Post Sample           | 854    | 30.23 | 30.19   |      | 7.17 | 0.0069               | 0.69%      |
| B5        | Sample 1    | Post Sample           | 854    | 30.12 |         |      |      |                      |            |
| <b>B6</b> | Sample 1    | Post Sample           | 854    | 30.23 |         |      |      |                      |            |
|           |             |                       |        |       |         |      |      |                      |            |
| A4        | Sample 1    | Post Sample           | RNaseP | 21.72 | 21.74   | 8.46 |      |                      |            |
| A5        | Sample 1    | Post Sample           | RNaseP | 21.63 |         |      |      |                      |            |
| A6        | Sample 1    | Post Sample           | RNaseP | 21.86 |         |      |      |                      |            |
|           |             |                       |        |       |         |      |      |                      |            |
| <b>B1</b> | Sample 2    | 100% Reference Sample | 854    | 23.67 | 23.67   |      |      |                      |            |
| <b>B2</b> | Sample 2    | 100% Reference Sample | 854    | 23.72 |         |      |      |                      |            |
| B3        | Sample 2    | 100% Reference Sample | 854    | 23.63 |         |      |      |                      |            |
|           |             |                       |        |       |         |      |      |                      |            |
| A1        | Sample 2    | 100% Reference Sample | RNaseP | 22.34 | 22.39   | 1.29 |      |                      |            |
| A2        | Sample 2    | 100% Reference Sample | RNaseP | 22.38 |         |      |      |                      |            |
| A3        | Sample 2    | 100% Reference Sample | RNaseP | 22.44 |         |      |      |                      |            |
|           |             |                       |        |       |         |      |      |                      |            |

The ΔΔCq is calculated with the following formula: (Mean Cq, Sample/Assay – Mean Cq, Sample/ReferenceAssay) – (Mean Cq, ReferenceSample/Assay – Mean Cq, ReferenceSample/ReferenceAssay)

The sample and reference sample are each normalized for total DNA input by comparing the mean Cq value of the assay reactions to the mean Cq value of the reference assay reactions.

Next, the normalized sample reaction value is compared to the normalized reference sample reaction value to generate a relative quantification value or  $\Delta\Delta$ Cq. This term is then converted into a linear term which represents the fold change in DNA input amount between the sample and reference sample with the following formula: 2-( $\Delta\Delta$ Cq). The fold change term is multiplied by the proportion of the reference sample that is purely reference sample (usually 100%) to generate the final percent determination for the DNA of interest in the unknown sample.

#### Algorithm Steps

The mean and standard deviation of the Cq values for replicate reactions are first calculated. The standard deviation calculation requires at least three replicate values. The Reference Sample/Reference Assay quality measurement is applied next. If the Reference Sample/Reference Assay quality measurement passes, the  $\Delta\Delta$ Cq, and DNA percents are calculated, displayed and stored. The Reference Sample/Reference Assay quality measurement requires that the mean Cq for the Reference Sample/Reference Assay must be  $\leq$  32.0. Samples which have a Cq  $\geq$ 39.0 are designated as negative.

The mean and standard deviation of the Cq values for replicate reactions are first calculated. The Reference Sample/Reference Assay quality measurement is applied next. If the Reference Sample/Reference Assay quality measurement passes,  $\Delta\Delta$ Cq, fold change, DNA percent, and mean DNA percent (if multiple quantification assays were used for the same unknown sample) are calculated.

# The DigitalTRACE<sup>™</sup> Analysis System

The correct placement of the threshold is crucial for an accurate data analysis. Positive droplets/partitions (above the threshold) are scored as "1", and negative droplets/partitions (below the threshold) are scored as "0". This digital signal is used to calculate the starting DNA concentration by statistically analyzing the numbers of positive and negative droplets in a sample. The users are strongly advised to check thoroughly all the thresholds after each dPCR run, before importing the run results into the TRACE Analysis<sup>™</sup> Software. Incorrect thresholding will lead to wrong results.

The values gained from the Universal Positive Control (UPC) amplification are not used in the calculations.

#### **Genotyping Test Algorithm**

Based on the CNV value, a marker can be scored as positive, negative or atypical.

*Note*: An NTC reaction (negative control containing the RNaseP Assay) can only be negative or atypical.

#### **Calculation of CNV**

CNV = (Concentration Marker / Concentration Reference)\*2

#### **Marker States**

#### Positive

For CNV values between 0.55 and 3.2, a marker is considered positive.

#### Negative

For CNV values lower than 0.02, a marker is considered negative.

#### Atypical

For CNV values between 0.02 and 0.55, between 1.4 and 1.6 and higher than 3.2, a marker is considered atypical.

#### **Quantification Test Algorithm**

The ratio (CNV Marker/CNV Reference) gained from the dPCR software (QuantaSoft or QIAcuity Software Suite) is used to calculate the DNA percentage. The ratio is based on the number of positive and negative partitions and is refined automatically by the use of Poisson statistics.

DNA % = (Concentration Marker / Concentration Reference)\*100\*2 for assays with CNV=1 DNA % = (Concentration Marker / Concentration Reference)\*100 for assays with CNV=2

#### **Number of Partitions**

During the partitioning step, the sample is divided into thousands of individual partitions that serve both for the calculation of the sample concentration (positive partitions), but also for the accurate statistical refinement of the calculated result (empty partitions). Problems with the partitioning process can result in lower partition numbers and, therefore, inaccurate quantification results.

## **Copy Number Adjustment**

TRACE Analysis<sup>™</sup> Software allows the user to change the CNV information for each sample. See the <u>Monitoring Data Analysis and Report</u> section for details.

Using the correct CNV is necessary to obtain the accurate quantification result. An incorrect CNV will lead to an underestimated or overestimated percentage value.

# **Bibliography**

Alizadeh, et al. Quantitative Assessment of Hematopoietic Chimerism after Bone Marrow Transplantation by Real-Time Quantitative Polymerase Chain Reaction. Blood, 2002; 99: 4618-4625.

George D, et al. Detection and Quantification of Chimerism by Droplet Digital PCR. Chimerism. 2013 Jul-Sep;4(3):102-8.

Jimenez-Velasco, et al. Reliable Quantification of Hematopoietic Chimerism after Allogeneic Transplantation for Acute Leukemia using Amplification by qPCR of Null Alleles and Insertion/Deletion Polymorphisms. Leukemia, 2005; 19: 336-423.

Koldehoff, et al. Quantitative Analysis of Chimerism after Allogeneic Stem Cell Transplantation by Real-Time Polymerase Chain Reaction with Single Nucleotide Polymorphisms, Standard Tandem Repeats, and Y-Chromosome-Specific Sequences. Am J Hematol, 2006; 81: 735-746.

Thiede, et al. Strategies and Clinical Implications of Chimerism Diagnostics after Allogeneic Hematopoietic Stem Cell Transplantation. Acta Haematol, 2004; 112: 16-23.

Verhoeven, et al. A Novel High-Throughput Droplet Digital PCR-Based Indel Quantification Method for the Detection of Circulating Donor-derived Cell-free DNA After Kidney Transplantation. Transplantation. 2022 Sep 1;106(9):1777-1786.

Willasch, et al. Sequence Polymorphism Systems for Quantitative Real-Time Polymerase Chain Reaction to Characterize Hematopoietic Chimerism-High Informativity and Sensitivity As Well As Excellent Reproducibility and Precision of Measurement. Laboratory Hematology, 2007; 13: 73-84.

| Glossary |  |  |
|----------|--|--|
|          |  |  |

| Bi-allelic                                      | an allele which exists in two variant forms - a major and minor<br>allele. Individuals may be homozygous for either variant or<br>heterozygous                                                                                                        |  |
|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Calibrator                                      | a sample used as the basis for comparative results                                                                                                                                                                                                    |  |
| Chimerism                                       | A biological state where two or more genetically distinct cell populations exist within a single individual                                                                                                                                           |  |
| Comparative $C_T$ ( $\Delta\Delta C_T$ ) method | Method for determining relative target quantity in samples. The relative quantity of target in each sample is determined by comparing the Cq in each sample to the Cq in the reference sample.                                                        |  |
| Cq                                              | Quantification Cycle; The fractional PCR cycle used for quantification; also referred to as the threshold cycle ( $C_T$ ), or crossing point (Cp) and take-off point (TOP)                                                                            |  |
| Experiment                                      | a collection of genotyping and monitoring reactions that are carried out simultaneously (i.e, on a single plate or in a single set tubes for RGQ cyclers).                                                                                            |  |
| INDEL                                           | Abbreviation for insertion/deletion polymorphism; a class of DNA mutation characterized by the loss or gain of genetic material at a specific locus                                                                                                   |  |
| Informative assay                               | An assay capable of distinguishing between genetic material from<br>two or more sources; An informative assay is an assay for a<br>marker allele that is present (positive) in one individual genome<br>and absent (negative) in the other genome(s). |  |
| Monitoring assay                                | an assay designed for use in quantification of a specific marker,<br>allele, or analyte. The assay must demonstrate high specificity for<br>accurate quantification and high sensitivity to achieve a desirable<br>limit of detection                 |  |
| Reference assay                                 | an assay designed specifically to detect the total amount of DNA<br>in a reaction; used in quantification to normalize the amount of<br>input DNA between reactions; also referred to as an endogenous<br>control assay                               |  |
| Reference Gene                                  | Gene used for normalization and relative quantification                                                                                                                                                                                               |  |

| Reference Sample                             | a control sample possessing the target DNA (typically 100% target DNA) to be quantified in the experimental sample by relative quantification; also referred to as a calibrator                                                                                                                                                                                                                  |
|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Recipient Sample                             | a control sample possessing the target DNA (typically 100% target DNA) to be quantified in the experimental sample by relative quantification; also referred to as a calibrator                                                                                                                                                                                                                  |
| Relative Quantification                      | a method of quantification where quantity of an unknown sample is derived by comparison to a reference sample                                                                                                                                                                                                                                                                                    |
| Sample                                       | A sample is a unique donor or recipient                                                                                                                                                                                                                                                                                                                                                          |
| Passive reference                            | A dye that produces fluorescence signal. Because the passive<br>reference signal should be consistent across all wells, it is used<br>to normalize the reporter dye signal to account for non-PCR<br>related fluorescence fluctuations caused by minor well-to-well<br>differences in concentrations or volume. Normalization to the<br>passive reference signal allows for high data precision. |
| Normalized reporter (Rn)                     | Fluorescence signal from the reporter dye normalized to the fluorescence signal of the passive reference.                                                                                                                                                                                                                                                                                        |
| Baseline-corrected normalized reporter (ΔRn) | The magnitude of normalized fluorescence signal generated by<br>the reporter. In experiments that contain data from qPCR, the<br>magnitude of normalized fluorescence signal generated by the<br>reporter at each cycle the PCR amplification. $\Delta$ Rn (cycle) = Rn<br>(cycle) – Rn (baseline), where Rn = normalized reporter                                                               |
| Threshold                                    | The intensity of fluorescence that must be exceeded for each reaction to be seen as positive                                                                                                                                                                                                                                                                                                     |
| Partition                                    | A compartment where the PCR reaction takes place                                                                                                                                                                                                                                                                                                                                                 |
| Nanoplate                                    | A compartment where the PCR reaction takes place                                                                                                                                                                                                                                                                                                                                                 |
| CNV                                          | Copy Number Variation (CNV) refers to a type of genetic variation<br>in which the number of copies of a particular segment of DNA<br>differs between individuals                                                                                                                                                                                                                                 |
| UPC                                          | Universal Plasmid Control (UPC). A synthetic control sample possessing the targets for Assays in the DigitalTRACE™panel (typically 100% target DNA)                                                                                                                                                                                                                                              |

# **End User Software License Agreement**

# JETA MOLECULAR BV END-USER SOFTWARE LICENSE AGREEMENT AND LIMITED PRODUCT WARRANTY

NOTICE TO USER: PLEASE READ THIS DOCUMENT CAREFULLY. THIS IS THE CONTRACT BETWEEN YOU AND JETA MOLECULAR BV (JETA) REGARDING THIS SOFTWARE PRODUCT. THIS AGREEMENT CONTAINS WARRANTY AND LIABILITY DISCLAIMERS AND LIMITATIONS. YOUR INSTALLATION AND USE OF THIS JETA SOFTWARE IS SUBJECT TO THE TERMS AND CONDITIONS CONTAINED IN THIS END-USER SOFTWARE LICENSE AGREEMENT, AND YOU WILL BE BOUND BY THESE TERMS AND CONDITIONS IF YOU INSTALL AND USE THE SOFTWARE. IF YOU DO NOT AGREE TO THESE TERMS AND CONDITIONS, YOU SHOULD SELECT THE DECLINE BUTTON BELOW, WHEREUPON INSTALLATION WILL STOP, AND PROMPTLY RETURN THIS SOFTWARE, TOGETHER WITH ALL PACKAGING, TO JETA AND YOUR PURCHASE PRICE WILL BE REFUNDED

This JETA End-User License Agreement accompanies a JETA software product ("Software") and related explanatory materials ("Documentation"). The term "Software" includes all executable files and applications included as part of the software product, and any upgrades, modified versions, updates, additions and copies of the Software licensed to you by JETA. The term "JETA" as used in this License, means JETA Corporation. The term "License" or "Agreement" means this End-User Software License Agreement. The term "you", "Customer" or "Licensee" means the purchaser of this license to the Software. A copy of this End-User Software License Agreement can be printed by copying the text and pasting it into word processing software that provides printing capabilities.

#### **Third-party Products**

This Software includes the following third-party software products (hereinafter collectively referred to as the "Third-Party Products"): Microsoft - .NET Framework version 4.5 Moq Copyright (c) 2007. Clarius Consulting, Manas Technology Solutions, InSTEDD http://www.moqthis.com/ All rights reserved.

NUnit

Portions Copyright © 2002-2013 Charlie Poole or Copyright © 2002-2004 James W. Newkirk, Michael C. Two, Alexei A. Vorontsov or Copyright © 2000-2002 Philip A. Craig

PDFsharp

Copyright (c) 2005-2007 empira Software GmbH, Cologne (Germany)

SharpZipLib

WPF Toolkit

#### Title

Title, ownership rights and intellectual property rights in and to the Software and Documentation shall at all times remain with JETA Corporation and its subsidiaries. Title, ownership rights and intellectual property rights in and to the Third-Party Product shall at all times remain with their respective licensors. All rights not specifically granted by this License, including Federal and international copyrights, are reserved by JETA and its subsidiaries.

#### Copyright

The Software, including its structure, organization, code, user interface and associated Documentation, is a proprietary product of JETA Corporation or its suppliers, and is protected by international laws of copyright, as well as other intellectual property laws and treatises. The law provides for civil and criminal penalties for anyone in violation of the laws of copyright.

#### License

#### Use of the Software

1 Subject to the terms and conditions of this Agreement, JETA grants you a non-exclusive, nontransferable license only to install and use the Software on a single computer for the sole purpose of using the Software that you

have purchased. You must use the Software in accordance with all applicable laws and regulations. You may transfer the Software to another single computer (or network, if a network version), but the Software may never be installed on more than one computer (or more than one network, if a network version) at any one time.

2 If the Software uses registration codes, access to the number of licensed copies of Software is controlled by a registration code. For example, if you have a registration code that enables you to use three copies of Software simultaneously, you cannot install the Software on more than three separate computers.

3 YOU MAY MAKE ONLY ONE COPY OF THE SOFTWARE IN MACHINE-READABLE FORM SOLELY FOR BACKUP OR ARCHIVAL PURPOSES, PROVIDED YOU REPRODUCE ON ANY SUCH COPY ALL COPYRIGHT NOTICES AND ANY OTHER PROPRIETARY LEGENDS FOUND ON THE ORIGINAL. JETA SHALL NOT BE RESPONSIBLE FOR THE QUALITY, INTEGRITY, FUNCTIONALITY, OR PERFORMANCE OF ANY COPY OF THE SOFTWARE. YOU MAY NOT MAKE ANY OTHER COPIES OF THE SOFTWARE.

#### Restrictions

1 You may not copy, transfer, rent, modify, use, merge, or translate the Software, or the associated Documentation, in whole or in part, except as expressly permitted in this Agreement or in the license agreements covering the Third-Party Product.

2 You may not reverse assemble, decompile, or otherwise reverse engineer the Software.

3 You may not remove any proprietary, copyright, trade secret or warning legend from the Software or any Documentation.

4 You agree to comply fully with all export laws and restrictions and regulations of the United States and applicable foreign agencies or authorities, and you agree that you have the sole responsibility to obtain such licenses to export, re-export or import as may be required after delivery of the Software to you. You agree that you will not export or re-export, directly or indirectly, the Software into any country prohibited by the United States Export Administration Act and the regulations thereunder or other applicable United States law.

5 Subject to the respective license terms and conditions applicable to the Third-Party Product included in this Software, you may not modify, sell, rent, transfer (except temporarily in the event of a computer malfunction), resell for profit, or distribute this license or the Software, or create derivative works based upon the Software, or any part thereof or any interest therein.

#### Trial

If this license is granted on a trial basis, you are hereby notified that license management software may be included to automatically cause the Software to cease functioning at the end of the trial period.

#### Termination

You may terminate this Agreement by discontinuing use of the Software, removing all copies from your computers and storage media, and returning the Software and Documentation, and all copies thereof, to JETA. JETA may terminate this Agreement if you fail to comply with all of its terms, in which case you agree to discontinue using the Software, remove all copies from your computers and storage media, and return the Software and Documentation, and all copies thereof, to JETA.

#### **U.S. Government End Users**

The Software is a "commercial item," as that term is defined in 48 C.F.R. 2.101 (Oct. 1995), consisting of "commercial computer software" and "commercial computer software documentation," as such terms are used in 48 C.F.R. 12.212 (Sept. 1995). Consistent with 48 C.F.R. 12.212 and 48 C.F.R. 227.7202-1 through 227.7202-4 (June 1995), all U.S. Government end users acquire the Software with only those rights set forth herein.

#### **European Community End Users**

If this Software is used within a country of the European Community, nothing in this Agreement shall be construed as restricting any right available under the European Community Software Directive, O.J. Eur. Comm. (No. L. 122) 42 (1991).

# LIMITED WARRANTY AND LIMITATION OF REMEDIES

Limited Warranty. JETA warrants that for a period of ninety days from the beginning of the applicable warranty period (as described below) the Software will function substantially in accordance with the functions and features described in the Documentation delivered with the Software when properly installed, and that for a period of ninety days from the beginning of the applicable warranty period (as described below) the tapes, CDs, diskettes or other media bearing the Software will be free of defects in materials and workmanship under normal use.

The above warranties do not apply to defects resulting from misuse, neglect, or accident, including without limitation: operation outside of the environmental or use specifications, or not in conformance with the instructions for any instrument system, Software, or accessories; improper or inadequate maintenance by the user; installation of software or interfacing, or use in combination with Software or products not supplied or authorized by JETA and modification or repair of the products not authorized by JETA. Warranty Period Commencement Date. The applicable warranty period for the Software installed by JETA's personnel or authorized representative begins on the earlier of: the date of installation; or three (3) months from the date of shipment for the Software. For Software installed by you or anyone other than JETA, the warranty period begins on the date the Software is delivered to you. The applicable warranty period for media begins on the date the media is delivered to you.

JETA MAKES NO OTHER WARRANTIES OF ANY KIND WHATSOEVER, EXPRESS OR IMPLIED, WITH RESPECT TO THE SOFTWARE OR DOCUMENTATION, INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE OR MERCHANTABILITY OR THAT THE SOFTWARE OR DOCUMENTATION IS NON-INFRINGING. ALL OTHER WARRANTIES ARE EXPRESSLY DISCLAIMED. WITHOUT LIMITING THE GENERALITY OF THE FOREGOING, JETA MAKES NO WARRANTIES THAT THE SOFTWARE WILL MEET YOUR REQUIREMENTS, THAT OPERATION OF THE LICENSED SOFTWARE WILL BE UNINTERRUPTED OR ERROR FREE OR WILL CONFORM EXACTLY TO THE DOCUMENTATION, OR THAT JETA WILL CORRECT ALL PROGRAM ERRORS. JETA'S SOLE LIABILITY AND RESPONSIBILITY FOR BREACH OF WARRANTY RELATING TO THE SOFTWARE OR DOCUMENTATION SHALL BE LIMITED, AT JETA'S SOLE OPTION, TO (1) CORRECTION OF ANY ERROR IDENTIFIED TO JETA IN A WRITING FROM YOU IN A SUBSEQUENT RELEASE OF THE SOFTWARE, WHICH SHALL BE SUPPLIED TO YOU FREE OF CHARGE, (2) ACCEPTING A RETURN OF THE PRODUCT, AND REFUNDING THE PURCHASE PRICE UPON RETURN OF THE PRODUCT AND REMOVAL OF ALL COPIES OF THE SOFTWARE FROM YOUR COMPUTERS AND STORAGE DEVICES, (3) REPLACEMENT OF THE DEFECTIVE SOFTWARE WITH A FUNCTIONALLY EQUIVALENT PROGRAM AT NO CHARGE TO YOU, OR (4) PROVIDING A REASONABLE WORK AROUND WITHIN A REASONABLE TIME. JETA'S SOLE LIABILITY AND RESPONSIBILITY UNDER THIS AGREEMENT FOR BREACH OF WARRANTY RELATING TO MEDIA IS THE REPLACEMENT OF DEFECTIVE MEDIA RETURNED WITHIN 90 DAYS OF THE DELIVERY DATE. THESE ARE YOUR SOLE AND EXCLUSIVE REMEDIES FOR ANY BREACH OF WARRANTY. WARRANTY CLAIMS MUST BE MADE WITHIN THE APPLICABLE WARRANTY PERIOD.

## LIMITATION OF LIABILITY

IN NO EVENT SHALL JETA OR ITS SUPPLIERS BE RESPONSIBLE OR LIABLE, WHETHER IN CONTRACT, TORT, WARRANTY OR UNDER ANY STATUTE (INCLUDING WITHOUT LIMITATION ANY TRADE PRACTICE, UNFAIR COMPETITION OR OTHER STATUTE OF SIMILAR IMPORT) OR ON ANY OTHER BASIS FOR SPECIAL, INDIRECT, INCIDENTAL, MULTIPLE, PUNITIVE, OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE POSSESSION OR USE OF, OR THE INABILITY TO USE, THE SOFTWARE OR DOCUMENTATION, EVEN IF JETA IS ADVISED IN ADVANCE OF THE POSSIBILITY OF SUCH DAMAGES, INCLUDING WITHOUT LIMITATION DAMAGES ARISING FROM OR RELATED TO LOSS OF USE, LOSS OF DATA, DOWNTIME, OR FOR LOSS OF REVENUE, PROFITS, GOODWILL OR BUSINESS OR OTHER FINANCIAL LOSS. IN ANY CASE, THE ENTIRE LIABILITY OF JETA AND ITS SUPPLIERS UNDER THIS LICENSE, OR ARISING OUT OF THE USE OF THE SOFTWARE, SHALL NOT EXCEED IN THE AGGREGATE THE PURCHASE PRICE OF THE SOFTWARE, IF PURCHASED INDEPENDENTLY, OR THE FAIR MARKET VALUE OF THE SOFTWARE, IF PURCHASED AS PART OF A JETA IN VITRO DIAGNOSTICS KIT. SOME STATES, COUNTRIES OR JURISDICTIONS LIMIT THE SCOPE OF OR PRECLUDE LIMITATIONS OR EXCLUSION OF REMEDIES OR DAMAGES, OR OF LIABILITY, SUCH AS LIABILITY FOR GROSS NEGLIGENCE OR WILLFUL MISCONDUCT, AS OR TO THE EXTENT SET FORTH ABOVE, OR DO NOT ALLOW IMPLIED WARRANTIES TO BE EXCLUDED. IN SUCH STATES, COUNTRIES OR JURISDICTIONS, THE LIMITATION OR EXCLUSION OF WARRANTIES, REMEDIES,

DAMAGES OR LIABILITY SET FORTH ABOVE MAY NOT APPLY TO YOU. HOWEVER, ALTHOUGH THEY SHALL NOT APPLY TO THE EXTENT PROHIBITED BY LAW, THEY SHALL APPLY TO THE FULLEST EXTENT PERMITTED BY LAW. YOU MAY ALSO HAVE OTHER RIGHTS THAT VARY BY STATE, COUNTRY OR OTHER JURISDICTION.

# CONFIDENTIALITY

Except as expressly allowed by this License, you will not use or disclose any Software, Documentation or related technology, idea, algorithm or information except to the extent you can document that it is generally available for use and disclosure by the public without charge or license. You recognize and agree that there is no adequate remedy at law for a breach of this provision, that such a breach would irreparably harm JETA and that JETA is entitled to equitable relief (without need to post a bond) with respect to any such breach or potential breach in addition to any other remedies.

# INDEMNITY

You shall defend, indemnify and hold harmless JETA and its officers, directors, employees and agents (the "JETA Indemnitees"), from and against all suits, claims, demands, losses, liabilities, damages and expenses (including reasonable attorneys' fees and costs) that the JETA Indemnitees may suffer or incur in connection with: (i) any third-party claim arising from your breach of this License; and (ii) any infringement by you of JETA's or its licensors' intellectual property rights in the Software or the Third-Party Product.

# BUSINESS OBJECTS SUBLICENSE GRANT, TERMS AND CONDITIONS

You agree not to alter, disassemble, decompile, translate, adapt or reverse-engineer the Business Objects Software or the report file (.RPT) format;

You agree not to distribute the Business Objects Software with any general-purpose report writing, data analysis or report delivery product or any other product that performs the same or similar functions as Business Objects' product offerings;

You agree not to use the Business Objects Software to create for distribution a product that is generally competitive with Business Objects' product offerings;

You agree not to use the Business Objects Software to create for distribution a product that converts the report file (.RPT) format to an alternative report file format used by any general-purpose report writing, data analysis or report delivery product that is not the property of Business Objects; You agree not to use the Business Objects Software on a rental or timesharing basis or to operate a service bureau facility for the benefit of third-parties; BUSINESS OBJECTS AND ITS SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESS OR

IMPLIED, INCLUDING WITHOUT LIMITATION THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. BUSINESS OBJECTS AND ITS SUPPLIERS SHALL HAVE NO LIABILITY WHATSOEVER UNDER THIS AGREEMENT OR IN CONNECTION WITH THE BUSINESS OBJECTS SOFTWARE.

# GENERAL

This Agreement shall be governed by laws of the Netherlands, exclusive of its conflict of laws provisions. This Agreement shall not be governed by the United Nations Convention on Contracts for the International Sale of Goods. You hereby agree that the courts located in the Utrecht Netherlands, will constitute the sole and exclusive forum for the resolution of any and all disputes arising out of or in connection with this Agreement and you hereby irrevocably consent to the personal jurisdiction and venue of such courts and irrevocably waive any objections thereto. This Agreement contains the complete agreement between the parties with respect to the subject matter hereof, and supersedes all prior or contemporaneous agreements or understandings, whether oral or written. If any provision of this Agreement is held by a court of competent jurisdiction to be contrary to law, that provision will be enforced to the maximum extent permissible and the remaining provisions of this Agreement will remain in full force and effect. The controlling language of this Agreement, and any proceedings relating to this Agreement, shall be English. You agree to bear any and all costs of translation, if necessary. The headings to the sections of this Agreement are used for convenience only and shall have no substantive meaning. All questions concerning this Agreement shall be directed to: JETA Molecular BV, Krommewetering 101C, 3543AN,

Utrecht, Netherlands, Attention: Legal Department.

Unpublished rights reserved under the copyright laws of the United States. JETA Molecular BV, Krommewetering 101C, 3543AN, Utrecht, Netherlands.

JETA and its logo design are registered trademarks of JETA Molecular BV in the U.S.

and/or certain other countries.

 $\ensuremath{\mathsf{QTRACE}}\xspace^{\ensuremath{\mathsf{BV}}}$  is a registered trademark of ElsworthMolecular Holding BV in the U.S. and/or certain other countries.

All other trademarks, copyrights, patents, service marks, logos and trade names are the sole property of their respective owners.